The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA adduct formation and mutation induction by nitropyrenes in Salmonella and Chinese hamster ovary cells: relationships with nitroreduction and acetylation.

Nitrated pyrenes are environmental pollutants and potent mutagens in the Salmonella reversion assay. In this study reversion induction by 1-nitropyrene and 1,8-dinitropyrene in Salmonella typhimurium TA1538 and mutation induction by 1-nitropyrene in Chinese hamster ovary (CHO) cells were related to the extent of metabolism and DNA adduct formation. In suspension cultures of Salmonella typhimurium TA1538, 1,8-dinitropyrene was up to 40-fold more mutagenic than 1-nitropyrene, although both compounds were metabolized at similar rates with nitroreduction being the major pathway. The major metabolite formed from 1-nitropyrene after 2 hr of incubation was 1-nitrosopyrene, while 1-amino-8-nitropyrene was the major metabolite formed from 1,8-dinitropyrene. 1-Nitrosopyrene and 1-nitro-8-nitrosopyrene elicited mutation values consistent with their being intermediates in the activation pathways. However, subsequent to nitroreduction, 1,8-dinitropyrene appeared to be further activated by acetylation, while 1-nitropyrene was not. Each nitrated pyrene produced a major DNA adduct substituted at the C8-position of deoxyguanosine. Although 1,8-dinitropyrene was more mutagenic than 1-nitropyrene, both compounds induced a similar number of revertants per adduct. Incubation of 1-nitrosopyrene with CHO cells produced a rapid concentration- and time-dependent induction of mutations and the conversion of 1-nitrosopyrene to 1-aminopyrene. In contrast, 1-nitropyrene did not induce mutations and was not converted to 1-aminopyrene. Both compounds produced the same major adduct, but adduct formation by 1-nitropyrene was much lower than by 1-nitrosopyrene.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

 
WikiGenes - Universities