The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. A possible role of the toxin substrate in Ca2+-mobilizing receptor-mediated signal transduction.

A chemotactic peptide stimulated the high-affinity GTPase activity in membrane preparations from guinea pig neutrophils. The enzyme stimulation was inhibited by prior exposure of the membrane-donor cells to islet-activating protein ( IAP), pertussis toxin, or by direct incubation of the membrane preparations with its A-protomer (the active peptide) in the presence of NAD. The affinity for the chemotactic peptide binding to its receptors was lowered by guanyl-5'-yl beta, gamma-imidodiphosphate (Gpp(NH)p) reflecting its coupling to the guanine nucleotide regulatory protein in neutrophils. The affinity in the absence of Gpp(NH)p was lower, but the affinity in its presence was not, in the A-protomer-treated membranes than in nontreated membranes. The inhibitory guanine nucleotide regulatory protein of adenylate cyclase (Ni) was purified from rat brain, and reconstituted into the membranes from IAP-treated cells. The reconstitution was very effective in increasing formyl-Met-Leu-Phe-dependent GTPase activity and increasing the chemotactic peptide binding to membranes due to affinity increase. The half-maximal concentration of IAP to inhibit GTPase activity was comparable to that of the toxin to inhibit the cellular arachidonate-releasing response which was well correlated with ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). It is proposed that the IAP substrate, Ni, couples to the chemotactic peptide receptor and mediates arachidonate-releasing responses in neutrophils, as it mediates adenylate cyclase inhibition in many other cell types.[1]


WikiGenes - Universities