A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone.
The photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum chromatophores have been compared in respect to the effects of artificial electron carriers [N-methylphenazonium methosulfate (PMS) and diaminodurene], reducing agents (ascorbate in particular), and various quinones in the absence and presence of the electron transport inhibitors antimycin A and dibromothymoquinone (DBMIB). In addition, the effects of both inhibitors on photosynthetic electron transport through cytochromes b and c has been followed. From the results obtained, it appears that in both organisms: a) ubiquinone functions as an electron carrier between the cytochromes, and b) both antimycin A and DBMIB inhibit cyclic electron flow in the segment...cytochrome b leads to ubiquinone leads to cytochrome c..., but at different sites. The systems apparently differ mainly in respect to the nature of the electron flow by-pass "shunt" that is evoked in the presence of PMS; thus, in R. rubrum, PMS catalyzes a shunt that by-passes both cytochrome b and ubiquinone, whereas in Rps. capsulata the PMS shunt seems to circumvent only ubiquinone.[1]References
- A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone. Gromet-Elhanan, Z., Gest, H. Arch. Microbiol. (1978) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg