The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chromatophores


High impact information on Chromatophores

  • In nature, activation of G-protein-coupled receptors expressed by skin cells called chromatophores effects pigment redistribution within the cells to change an animal's coloration [6].
  • Pigment migration in cultured erythrophores of the squirrel fish Holocentrus ascensionis, after manipulation with K+, epinephrine, 3',5'-dibutyryl cyclic adenosine monophosphate, theophylline, and caffeine, is essentially identical to that observed in this chromatophore in situ [7].
  • In chromatophores, the decrease in the amount of photoreducible quinones when inhibiting a fraction of the centers implies a confinement of the quinone pool over small domains, including one to six reaction centers [8].
  • These two interacting regions are on the cytoplasmic side of the chromatophore membrane and closed to the DE loop and helix G of cytochrome b, respectively [9].
  • A sulfide-quinone oxidoreductase (SQR, EC 1.8.5.'.) has been purified to homogeneity from chromatophores of the non-sulfur purple bacterium Rhodobacter capsulatus DSM 155 [10].

Chemical compound and disease context of Chromatophores


Biological context of Chromatophores


Anatomical context of Chromatophores


Associations of Chromatophores with chemical compounds


Gene context of Chromatophores

  • Comparative analyses of the pigment-aggregating and -dispersing actions of MCH on fish chromatophores [30].
  • In addition, glial fibrillary acidic and S-100 proteins were detected in the chromatophores with immunohistochemical staining [31].
  • Cys-185 reacts with NEM only after detergent disruption of the sealed, inside-out chromatophores, indicating that this position of cytochrome b is accessible on the outer (periplasmic) surface of the membrane [32].
  • Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low [33].
  • Phospholipase A2 treatment inhibited 60% of the succinate dehydrogenase activity of chromatophores but only 8% of the activity of SDVs, indicating the membrane impermeability of phospholipase A2 [17].

Analytical, diagnostic and therapeutic context of Chromatophores


  1. Proton transfer from the bulk to the bound ubiquinone Q(B) of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water. Gopta, O.A., Cherepanov, D.A., Junge, W., Mulkidjanian, A.Y. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. The interaction of 4-chloro-7-nitrobenzofurazan with Rhodospirillum rubrum chromatophores, their soluble F1-ATPase, and the isolated purified beta-subunit. Khananshvili, D., Gromet-Elhanan, Z. J. Biol. Chem. (1983) [Pubmed]
  3. H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation my mersalyl. Belogurov, G.A., Turkina, M.V., Penttinen, A., Huopalahti, S., Baykov, A.A., Lahti, R. J. Biol. Chem. (2002) [Pubmed]
  4. Membranes of Rhodopseudomonas sphaeroides: effect of cerulenin on assembly of chromatophore membrane. Broglie, R.M., Niederman, R.A. J. Bacteriol. (1979) [Pubmed]
  5. Modifiable chromatophore proteins in photosynthetic bacteria. Hui, K.M., Hurlbert, R.E. J. Bacteriol. (1979) [Pubmed]
  6. Tools for investigating functional interactions between ligands and G-protein-coupled receptors. Lerner, M.R. Trends Neurosci. (1994) [Pubmed]
  7. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy. Byers, H.R., Porter, K.R. J. Cell Biol. (1977) [Pubmed]
  8. Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes. Comayras, F., Jungas, C., Lavergne, J. J. Biol. Chem. (2005) [Pubmed]
  9. Subunit IV of cytochrome bc1 complex from Rhodobacter sphaeroides. Localization of regions essential for interaction with the three-subunit core complex. Tso, S.C., Shenoy, S.K., Quinn, B.N., Yu, L. J. Biol. Chem. (2000) [Pubmed]
  10. Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. Schütz, M., Shahak, Y., Padan, E., Hauska, G. J. Biol. Chem. (1997) [Pubmed]
  11. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields. Leiser, M., Gromet-Elhanan, Z. J. Biol. Chem. (1975) [Pubmed]
  12. Resolution and reconstitution of Rhodospirillum rubrum pyridine dinucleotide transhydrogenase. Proteolytic and thermal inactivation of the membrane component. Fisher, R.R., Rampey, S.A., Sadighi, A., Fisher, K. J. Biol. Chem. (1975) [Pubmed]
  13. Localization of chromatophore proteins of Rhodobacter sphaeroides. II. Topography of cytochrome c1 and the Rieske iron-sulfur protein as determined by proteolytic digestion of the outer and luminal membrane surfaces. Theiler, R., Niederman, R.A. J. Biol. Chem. (1991) [Pubmed]
  14. Electron and proton transfer on the acceptor side of the reaction center in chromatophores of Rhodobacter capsulatus: evidence for direct protonation of the semiquinone state of QB. Lavergne, J., Matthews, C., Ginet, N. Biochemistry (1999) [Pubmed]
  15. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores. Shinkarev, V.P., Ugulava, N.B., Crofts, A.R., Wraight, C.A. Biochemistry (2000) [Pubmed]
  16. ATP synthesis and hydrolysis by a hybrid system reconstituted from the beta-subunit of Escherichia coli F1-ATPase and beta-less chromatophores of Rhodospirillum rubrum. Gromet-Elhanan, Z., Khananshvili, D., Weiss, S., Kanazawa, H., Futai, M. J. Biol. Chem. (1985) [Pubmed]
  17. Phospholipid topography of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Al-Bayatti, K.K., Takemoto, J.Y. Biochemistry (1981) [Pubmed]
  18. AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. Lima, P.A., Nardi, G., Brown, E.R. Eur. J. Neurosci. (2003) [Pubmed]
  19. Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis. Baccarini-Melandri, A., Gabellini, N., Melandri, B.A., Hurt, E., Hauska, G. J. Bioenerg. Biomembr. (1980) [Pubmed]
  20. Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems. Robertson, D.E., Prince, R.C., Bowyer, J.R., Matsuura, K., Dutton, P.L., Ohnishi, T. J. Biol. Chem. (1984) [Pubmed]
  21. Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Kumagai, H., Fujiwara, T., Matsubara, H., Saeki, K. Biochemistry (1997) [Pubmed]
  22. Localization of ferrochelatase and of newly synthesized haem in membrane fractions from Rhodopseudomonas spheroides. Barrett, J., Jones, O.T. Biochem. J. (1978) [Pubmed]
  23. Localization of mRNAs for insulin-like growth factor-I (IGF-I), IGF-I receptor, and IGF binding proteins in rat eye. Burren, C.P., Berka, J.L., Edmondson, S.R., Werther, G.A., Batch, J.A. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  24. Crossed immunoelectrophoretic analysis of chromatophore membranes from Rhodopseudomonas sphaeroides. Collins, M.L., Mallon, D.E., Niederman, R.A. J. Bacteriol. (1979) [Pubmed]
  25. The interaction of carboxyl group reagents with the Rhodospirillum rubrum F1-ATPase and its isolated beta-subunit. Khananshvili, D., Gromet-Elhanan, Z. J. Biol. Chem. (1983) [Pubmed]
  26. Inhibition of electron transfer by 3-alkyl-2-hydroxy-1,4-naphthoquinones in the ubiquinol-cytochrome c oxidoreductases of Rhodopseudomonas sphaeroides and mammalian mitochondria. Interaction with a ubiquinone-binding site and the Rieske iron-sulfur cluster. Matsuura, K., Bowyer, J.R., Ohnishi, T., Dutton, P.L. J. Biol. Chem. (1983) [Pubmed]
  27. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential. Gromet-Elhanan, Z., Leiser, M. J. Biol. Chem. (1975) [Pubmed]
  28. Photoaffinity labeling of an antimycin-binding site in Rhodopseudomonas sphaeroides. Wilson, E., Farley, T.M., Takemoto, J.Y. J. Biol. Chem. (1985) [Pubmed]
  29. Reconstitution of biological molecular generators of electric current. Bacteriochlorophyll and plant chlorophyll complexes. Barsky, E.L., Dancshazy, Z., Drachey, L.A., Il'ina, M.D., Jasaitis, A.A., Kondrashin, A.A., Samuilov, V.D., Skulachev, V.P. J. Biol. Chem. (1976) [Pubmed]
  30. Comparative analyses of the pigment-aggregating and -dispersing actions of MCH on fish chromatophores. Oshima, N., Nakamaru, N., Araki, S., Sugimoto, M. Comp. Biochem. Physiol. C Toxicol. Pharmacol. (2001) [Pubmed]
  31. Malignant chromatophoroma in a canebrake rattlesnake (Crotalus horridus atricaudatus). Gregory, C.R., Harmon, B.G., Latimer, K.S., Hafner, S., Campagnoli, R.P., McManamon, R.M., Steffens, W.L. J. Zoo Wildl. Med. (1997) [Pubmed]
  32. The involvement of serine 175 and alanine 185 of cytochrome b of Rhodobacter sphaeroides cytochrome bc1 complex in interaction with iron-sulfur protein. Tian, H., Yu, L., Mather, M.W., Yu, C.A. J. Biol. Chem. (1997) [Pubmed]
  33. Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. Bowyer, J.R., Hunter, C.N., Ohnishi, T., Niederman, R.A. J. Biol. Chem. (1985) [Pubmed]
  34. Large-scale purification and characterization of a highly active four-subunit cytochrome bc1 complex from Rhodobacter sphaeroides. Andrews, K.M., Crofts, A.R., Gennis, R.B. Biochemistry (1990) [Pubmed]
  35. Affinity chromatography of H+-translocating adenosine triphosphatase isolated by chloroform extraction of Rhodospirillum rubrum chromatophores. Modification of binding affinity by divalent cations and activating anions. Webster, G.D., Jackson, J.B. Biochim. Biophys. Acta (1978) [Pubmed]
WikiGenes - Universities