The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Fatty acid synthesis in mitochondria of Euglena gracilis.

A malonyl-CoA-independent fatty acid synthetic system, different from the systems in other subcellular fractions, occurred in mitochondria of Euglena gracilis. The system had ability to synthesize fatty acids directly from acetyl-CoA as both primer and C2 donor using NADH as an electron donor. Fatty acids were synthesized by reversal of beta-oxidation with the exception that enoyl-CoA reductase functioned instead of acyl-CoA dehydrogenase in degradation system. A fairly high activity of enoyl-CoA reductase was found on various enoyl-CoA substrates (C4-C12) with NADH or NADPH. Three species of enoyl-CoA reductase, distinct from each other by their chain-length specificity, were found in Euglena mitochondria, and one of them was highly specific for crotonyl-CoA. It is also discussed that the mitochondrial fatty-acid synthetic system contributes to wax ester fermentation, the anaerobic energy-generating system found in the organism.[1]


  1. Fatty acid synthesis in mitochondria of Euglena gracilis. Inui, H., Miyatake, K., Nakano, Y., Kitaoka, S. Eur. J. Biochem. (1984) [Pubmed]
WikiGenes - Universities