The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Euglena

  • Bovine mitochondrial ribosomes are active with homologous mitochondrial elongation factor (EF)-G but display no activity with the mitochondrial or chloroplast translocases from the lower eukaryote Euglena gracilis, with Escherichia coli or Bacillus subtilis EF-G or with cytoplasmic EF-2 [1].
  • Analyses of available GAPDH sequences from other eubacterial sources indicate that the glycosomal gap gene from trypanosomes (cytosolic in Euglena) and the gap gene from the spirochete Treponema pallidum are each other's closest relatives [2].
  • Proteins with a BLUF (sensor of blue light using flavin adenine dinucleotide) domain represent a newly recognized class of photoreceptors that is widely distributed in the genomes of photosynthetic bacteria, cyanobacteria, and Euglena [3].
  • Coomassie brilliant blue G-250 dye-binding technique for determination of autolytic protein breakdown in Euglena gracilis and comparison to other methods of autolysis measurement [4].
  • This procedure removed the vitamin B12 analogues which are measured by microbiological assay with Lactobacillus leichmannii and Euglena gracilis and which are measured in an isotope dilution method using intrinsic factor [5].

High impact information on Euglena

  • Finally, we briefly discuss multipartite and post-transcriptionally edited group II introns, together with the intron microcosm of Euglena gracilis chloroplasts and the possible relationships between group II and spliceosome-catalyzed splicing processes [6].
  • The single, chloroplast encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) from Euglena gracilis is found to contain nine intervening sequences [7].
  • RNA fingerprint analysis confirmed that tRNAMetm, tRNAlle1 and tRNALeu are correctly processed transcripts from the spinach chloroplast trnM2, trnl1, and Euglena trnL1 loci respectively [8].
  • The RNA polymerase contained in the chloroplast extract transcribes the spinach chloroplast trnM2, trnV1, and trnl1 loci and the trnV1-trnN1-trnR1-trnL1 cluster in the EcoG fragment of the Euglena chloroplast genome [8].
  • The primary sequence of phenylalanine tRNA (tRNAphe) from the chloroplasts of Euglena gracilis has been determined: pG-C-U-G-G-G-A-U-A-G-C-U-C-A-G-D-U-G-Gm-U(U)-A-G-A-G-C-G-G-A-G-G-A-C-U-G-A-A-A-A-PSI-C-C-U-U-G-U-m7G-Py-C-A-C-C-A-G-T-psi-C-A-A-A-U-C-U-G-G-U-U-C-C-U-A-G-C-A-C-C-A [9].

Chemical compound and disease context of Euglena


Biological context of Euglena


Anatomical context of Euglena

  • Flagella, intact deflagellated cells and isolated cell surfaces of the unicell , Euglena were separately assayed for glycosyltransferase activity by incubating these fractions with uridine diphosphate-[3H]glucose and isolating radiolabeled products [20].
  • To determine the transport route from cytoplasm to chloroplast, Euglena was pulse labeled with 35S-sulfate and the organelles were separated on sucrose gradients [21].
  • Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines [22].
  • The nucleotide sequence of the mycoplasmal gene showed about 60% homology to the sequences of tuf genes of other prokaryotes, yeast mitochondria and Euglena gracilis chloroplasts, and about 75% similarity was found when comparing the deduced amino acid sequences of the various Tu proteins [23].
  • Comparison of glycerophosphate acyltransferases from Euglena chloroplasts and microsomes [24].

Associations of Euglena with chemical compounds

  • Results of experiments conducted in the flagellate Euglena suggest that nicotinamide adenine dinucleotide (NAD+), the mitochondrial Ca2+-transport system, Ca2+, calmodulin, NAD+ kinase, and NADP+ phosphatase represent clock "gears" that, in ensemble, might constitute a self-sustained circadian oscillating loop in this and other organisms [25].
  • By cloning Euglena gracilis nuclear DNA and isolating the rbcS gene (encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), we have shown that the short leader sequence does not flank the nuclear gene sequence [26].
  • Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena [27].
  • The small subunit (SSU) of ribulose 1-5 bisphosphate carboxylase/oxygenase is a 15 kd protein in Euglena gracilis [28].
  • Antibodies raised against the Sarkosyl-insoluble, major flagellar glycoprotein fraction, mastigonemes, were used to determine the source of flagellar surface glycoproteins and to define the general properties of flagellar surface assembly in Euglena [29].

Gene context of Euglena

  • The psbF locus of Euglena gracilis chloroplast DNA has an unusual 1042 nt group II intron that appears to be formed from the insertion of one group II intron into structural domain V of a second group II intron [30].
  • The Euglena psbA gene contains four introns of size 435, 443, 434, and 617 bp [31].
  • The splicing of a 409 nucleotide intron from the Euglena gracilis chloroplast ribosomal protein S3 gene (rps3) was examined by cDNA cloning and sequencing, and northern hybridization [32].
  • The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon [33].
  • The psaA operon pre-mRNA of the Euglena gracilis chloroplast is processed into photosystem I and II mRNAs that accumulate differentially depending on the conditions of cell growth [34].

Analytical, diagnostic and therapeutic context of Euglena


  1. Bovine mitochondrial ribosomes. Elongation factor specificity. Eberly, S.L., Locklear, V., Spremulli, L.L. J. Biol. Chem. (1985) [Pubmed]
  2. Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Figge, R.M., Schubert, M., Brinkmann, H., Cerff, R. Mol. Biol. Evol. (1999) [Pubmed]
  3. Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1. Fukushima, Y., Okajima, K., Shibata, Y., Ikeuchi, M., Itoh, S. Biochemistry (2005) [Pubmed]
  4. Coomassie brilliant blue G-250 dye-binding technique for determination of autolytic protein breakdown in Euglena gracilis and comparison to other methods of autolysis measurement. Krauspe, R., Scheer, A. Anal. Biochem. (1986) [Pubmed]
  5. Demonstration of vitamin B12 analogues in human sera not detected by microbiological assay. Chanarin, I., Muir, M. Br. J. Haematol. (1982) [Pubmed]
  6. Structure and activities of group II introns. Michel, F., Ferat, J.L. Annu. Rev. Biochem. (1995) [Pubmed]
  7. Nine introns with conserved boundary sequences in the Euglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene. Koller, B., Gingrich, J.C., Stiegler, G.L., Farley, M.A., Delius, H., Hallick, R.B. Cell (1984) [Pubmed]
  8. Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Gruissem, W., Greenberg, B.M., Zurawski, G., Prescott, D.M., Hallick, R.B. Cell (1983) [Pubmed]
  9. The first nucleotide sequence of an organelle transfer RNA: chloroplastic tRNAphe. Chang, S.H., Brum, C.K., Siberklang, M., RajBhandary, U.L., Hecker, L.I., Barnett, W.E. Cell (1976) [Pubmed]
  10. Effects of iron-, manganese-, or magnesium-deficiency on the growth and morphology of Euglena gracilis. Hilt, K.L., Gordon, P.R., Hein, A., Caulfield, J.P., Falchuk, K.H. J. Protozool. (1987) [Pubmed]
  11. Evolution of ornithine decarboxylase activity during the cell cycle of Euglena gracilis Z in synchronous culture. Influence of vitamin B-12. Lafarge-Frayssinet, C., Bertaux, O., Valencia, R., Frayssinet, C. Biochim. Biophys. Acta (1978) [Pubmed]
  12. Individual 1H-NMR assignments for the heme groups and the axially bound amino acids and determination of the coordination geometry at the heme iron in a mixture of two isocytochromes c-551 from Rhodopseudomonas gelatinosa. Senn, H., Wüthrich, K. Biochim. Biophys. Acta (1983) [Pubmed]
  13. Antitumor activity of paramylon on sarcoma-180 in mice. Quesada, L.A., de Lustig, E.S., Marechal, L.R., Belocopitow, E. Gann = Gan. (1976) [Pubmed]
  14. Synthesis, antimicrobial testing and QSAR study of new 2-phenylethenylbenzothiazolium salts substituted by cyclic amines. Magdolen, P., Zahradník, P., Foltínová, P. Die Pharmazie. (2000) [Pubmed]
  15. Cytochrome c oxidase as the receptor molecule for chemoaccumulation (chemotaxis) of Euglena toward oxygen. Miller, S., Diehn, B. Science (1978) [Pubmed]
  16. Conformational transitions of a cytochrome c having a single thioether bridge. Brems, D.N., Stellwagen, E. J. Biol. Chem. (1983) [Pubmed]
  17. Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. Abel, E.S., Davids, B.J., Robles, L.D., Loflin, C.E., Gillin, F.D., Chakrabarti, R. J. Biol. Chem. (2001) [Pubmed]
  18. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. Sulli, C., Fang, Z., Muchhal, U., Schwartzbach, S.D. J. Biol. Chem. (1999) [Pubmed]
  19. Location of the single gene for elongation factor Tu on the Euglena gracilis chloroplast chromosome. Passavant, C.W., Stiegler, G.L., Hallick, R.B. J. Biol. Chem. (1983) [Pubmed]
  20. Endogenous glycosyltransferases glucosylate lipids in flagella of Euglena. Chen, S.J., Bouck, G.B. J. Cell Biol. (1984) [Pubmed]
  21. A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor. Sulli, C., Schwartzbach, S.D. Plant Cell (1996) [Pubmed]
  22. Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Shashidhara, L.S., Smith, A.G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  23. Nucleotide sequence and codon usage of the elongation factor Tu(EF-Tu) gene from Mycoplasma pneumoniae. Yogev, D., Sela, S., Bercovier, H., Razin, S. Mol. Microbiol. (1990) [Pubmed]
  24. Comparison of glycerophosphate acyltransferases from Euglena chloroplasts and microsomes. Hershenson, S., Boehler-Kohler, B.A., Ernst-Fonberg, M.L. Arch. Biochem. Biophys. (1983) [Pubmed]
  25. Biochemical modeling of an autonomously oscillatory circadian clock in Euglena. Goto, K., Laval-Martin, D.L., Edmunds, L.N. Science (1985) [Pubmed]
  26. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. Tessier, L.H., Keller, M., Chan, R.L., Fournier, R., Weil, J.H., Imbault, P. EMBO J. (1991) [Pubmed]
  27. Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena. Rogalski, A.A., Bouck, G.B. J. Cell Biol. (1980) [Pubmed]
  28. Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. Chan, R.L., Keller, M., Canaday, J., Weil, J.H., Imbault, P. EMBO J. (1990) [Pubmed]
  29. Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum. Rogalski, A.A., Bouck, G.B. J. Cell Biol. (1982) [Pubmed]
  30. Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. Copertino, D.W., Hallick, R.B. EMBO J. (1991) [Pubmed]
  31. Chloroplast gene for Mr 32000 polypeptide of photosystem II in Euglena gracilis is interrupted by four introns with conserved boundary sequences. Karabin, G.D., Farley, M., Hallick, R.B. Nucleic Acids Res. (1984) [Pubmed]
  32. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution. Copertino, D.W., Christopher, D.A., Hallick, R.B. Nucleic Acids Res. (1991) [Pubmed]
  33. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon. Yepiz-Plascencia, G.M., Radebaugh, C.A., Hallick, R.B. Nucleic Acids Res. (1990) [Pubmed]
  34. The psaA operon pre-mRNA of the Euglena gracilis chloroplast is processed into photosystem I and II mRNAs that accumulate differentially depending on the conditions of cell growth. Stevenson, J.K., Hallick, R.B. Plant J. (1994) [Pubmed]
  35. Oxidative phosphorylation during glycollate metabolism in mitochondria from phototrophic Euglena gracilis. Collins, N., Brown, R.H., Merrett, M.J. Biochem. J. (1975) [Pubmed]
  36. Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gracilis. Hart, G.J., Battersby, A.R. Biochem. J. (1985) [Pubmed]
  37. Flow fluorometric study of DNA content in nonproliferative Euglena gracilis cells and during proliferation. Bonaly, J., Mestre, J.C. Cytometry. (1981) [Pubmed]
  38. Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z. Heelis, D.V., Kernick, W., Phillips, G.O., Davies, K. Arch. Microbiol. (1979) [Pubmed]
  39. Studies of free radical-mediated cryoinjury in the unicellular green alga Euglena gracilis using a non-destructive hydroxyl radical assay: a novel approach for developing protistan cryopreservation strategies. Fleck, R.A., Benson, E.E., Bremner, D.H., Day, J.G. Free Radic. Res. (2000) [Pubmed]
WikiGenes - Universities