The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Prevention of granuloma development in the mouse by using T cell hybridoma products.

The ability of an azobenzenearsonate (ABA)-specific suppressor T cell factor, a soluble extract from first order suppressor T cells (Ts1), and suppressor molecules produced by a long-term T cell hybridoma to regulate ABA-specific granuloma formation was studied. ABA-derivatized syngeneic spleen cells (ABA-SC) administered subcutaneously induced persistent delayed-type hypersensitivity (DTH) responses, detected by footpad swelling and hapten-specific granuloma formation by 72 and 96 hr after challenge with ABA-bovine serum albumin coupled to polyacrylamide beads (ABA-BSA-PAB). Soluble factors from ABA-specific Ts1 prevented DTH and granulomatous development after subcutaneous administration of ABA-SC. Moreover, the in vivo administration of a factor that is derived from a Ts1 functioning hybrid cell line induced a second set of suppressor cells (Ts2) that upon transfer to syngeneic ABA-primed mice were able to inhibit granuloma formation in the footpad, as well as in the gastrointestinal tract after challenge with ABA-BSA-PAB. These experiments demonstrate the dependence of the granulomatous reaction on T cell-mediated events, as well as the potential therapeutic efficacy of an antigen-specific suppressor T cell factor and a hybridoma T cell product in limiting antigen-specific granuloma formation in vivo.[1]

References

  1. Prevention of granuloma development in the mouse by using T cell hybridoma products. Ginsburg, C.H., Dambrauskas, J.T., Whitaker, R.B., Falchuk, Z.M., Greene, M.I. J. Immunol. (1984) [Pubmed]
 
WikiGenes - Universities