The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Antinociceptive potencies of beta-casomorphin analogs as compared to their affinities towards mu and delta opiate receptor sites in brain and periphery.

beta-Casomorphins and their analogs were tested for their opioid activities in the myenteric plexus longitudinal muscle preparation of the guinea pig ileum ( GPI), the isolated mouse vas deferens (MVD), and for their affinities to mu- delta- and kappa- binding sites in rat brain membranes. C-terminal amidation of beta-casomorphin-4 and (-5) increased opioid potency in both organ preparations ( GPI, MVD) and affinity to mu-binding sites in brain whereas binding to delta-sites was diminished. These beta-casomorphin-amides displayed a 2-3 times greater naloxone reversible antinociceptive effect than natural beta-casomorphins. Introduction of D-alanine at position 2 in the beta-casomorphin-amides increased potency in the GPI whereas activity in the MVD was only slightly changed. These compounds, however, showed a remarkable increase in binding to delta-sites in brain with an unaffected or slightly increased binding to mu-sites and decreased binding to kappa-sites. D-Ala2-beta-casomorphin-4 and (-5) amides were 10 times more potent antinociceptive agents than corresponding beta-casomorphin-amides. These results suggest firstly, that peripheral delta-receptors in the MVD are not as closely related to delta-binding sites at rat brain membranes as is the case with mu-receptors in the GPI and mu-binding sites, and secondly, in addition to mu-receptors, delta-receptors may be of importance in mediating antinociception.[1]

References

 
WikiGenes - Universities