The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pyrimidine metabolism in Tritrichomonas foetus.

The anaerobic parasitic protozoa Tritrichomonas foetus is found incapable of de novo pyrimidine biosynthesis by its failure to incorporate bicarbonate, aspartate, or orotate into pyrimidine nucleotides or nucleic acids. Uracil phosphoribosyltransferase in the cytoplasm provides the major pyrimidine salvage for the parasite. Exogenous uridine and cytidine are mostly converted to uracil by uridine phosphorylase and cytidine deaminase in T. foetus prior to incorporation. T. foetus cannot incorporate labels from exogenous uracil or uridine into DNA; it has no detectable dihydrofolate reductase or thymidylate synthetase and is resistant to methotrexate, pyrimethamine, trimethoprim, and 5-bromovinyldeoxyuridine at millimolar concentrations. It has an enzyme thymidine phosphotransferase in cellular fraction pelleting at 100,000 X g that can convert exogenous thymidine to TMP via a phosphate donor such as p-nitrophenyl phosphate or nucleoside 5'-monophosphate. Thymidine salvage in T. foetus is thus totally dissociated from other pyrimidine salvage.[1]

References

  1. Pyrimidine metabolism in Tritrichomonas foetus. Wang, C.C., Verham, R., Tzeng, S.F., Aldritt, S., Cheng, H.W. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
 
WikiGenes - Universities