The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Neural control of the sphincter of Oddi. A physiological role of 5-hydroxytryptamine in the regulation of basal sphincter of Oddi motor activity in the cat.

The effect of 5-hydroxytryptamine (5-HT) on the sphincter of Oddi (SO) was studied in the cat. The SO had two motor responses to 5-HT: the most common was an initial contraction followed by a more prolonged relaxation, and the other was an exclusive relaxation. Tetrodotoxin did not impair the magnitude of the net contraction induced by 5-HT, but it completely blocked the relaxation. Methysergide partially inhibited the SO contraction in response to submaximal doses of 5-HT (5-20 micrograms/kg). Atropine decreased the SO excitatory response to all doses of 5-HT. The combination of atropine and methysergide completely antagonized the 5-HT excitatory effect, which changed the SO biphasic response to an exclusive relaxation. After tetrodotoxin, the effect of 5-HT was almost completely antagonized by methysergide alone. The SO contraction and relaxation caused by 5-HT were almost completely blocked by 5-HT tachyphylaxis. In contrast, a 5-HT depletion with reserpine enhanced the sensitivity of the SO to 5-HT, responding to doses a thousand times smaller than in control animals. Hexamethonium, phentolamine, propranolol, and 5-methoxy-N,N-dimethyltryptamine did not antagonize the 5-HT-induced contraction or relaxation. These findings indicate that 5-HT caused SO contraction by stimulating postganglionic cholinergic neurons and the smooth muscle directly and caused relaxation by stimulating postganglionic, noncholinergic, nonadrenergic inhibitory neurons. 5-HT blockade or depletion resulted in a significant reduction in basal tonic pressures and in the amplitude of phasic contractions, which suggested that serotonergic neurons may play a physiologic role in the regulation of basal SO motor activity.[1]


WikiGenes - Universities