The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inactivation of catalase by phenylhydrazine. Formation of a stable aryl-iron heme complex.

Catalase promotes the H2O2-dependent oxidation of phenylhydrazine to benzene but simultaneously is subject to a pseudo-first order inactivation process. Each inactivation event is subtended by catalytic turnover of three molecules of phenylhydrazine and 52 molecules of H2O2. The dimethyl ester of N-phenylprotoporphyrin IX is extracted with acidic methanol from the inactivated enzyme, but the prosthetic heme with a phenyl sigma-bonded to the iron atom is obtained by gentle extraction with 2-butanone. The absolute chirality of N-ethylprotoporphyrin IX isolated from catalase inactivated with ethylhydrazine confirms that the prosthetic heme has the same chiral orientation in the active site as it does in hemoglobin. The known inactivation of methemoglobin by phenylhydrazine is shown to depend on H2O2 but not oxygen. The results demonstrate that the H2O2-dependent oxidation of phenylhydrazine by catalase and other hemoproteins results in sigma-coordination of a phenyl residue to the prosthetic heme iron. This process may play a role not only in phenylhydrazine-mediated erythrocyte lysis but also in the activation of guanylate cyclase.[1]


  1. Inactivation of catalase by phenylhydrazine. Formation of a stable aryl-iron heme complex. Ortiz de Montellano, P.R., Kerr, D.E. J. Biol. Chem. (1983) [Pubmed]
WikiGenes - Universities