The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Induction and inhibition of Friend erythroleukemia cell differentiation by pyrimidine analogs: analysis of the requirement for intracellular accumulation and incorporation into DNA.

Alkyldeoxyuridines which differ from thymidine by a C5 substitution of straight or branched alkyl chains of two to six carbon atoms have been tested for their ability to be taken up, phosphorylated, and incorporated into DNA. Analysis of the uptake of 5-ethyl-2'-deoxyuridine and 5-propyl-2'-deoxyuridine (n-PrdU)--similar to both thymidine and 5-bromo-2'-deoxyuridine--indicates that transport is dependent upon a functional cellular thymidine kinase. All of the aforementioned pyrimidines with the exception of n-PrdU are phosphorylated to the triphosphate and incorporated into DNA. The homologs 5-iso-propyl-2'-deoxyuridine (iso-PrdU) and 5-hexyl-2'-deoxyuridine are neither transported into the cell, phosphorylated, nor incorporated into DNA. These analogs were tested (i) for their ability to induce in the absence of dimethyl sulfoxide and (ii) to determine whether they enhance or inhibit dimethyl sulfoxide-induced differentiation of Friend erythroleukemia cells. Inhibition of erythroid differentiation appears to require the incorporation of thymidine analogs into DNA, and thus only 5-ethyl-2'-deoxyuridine and 5-bromo-2'-deoxyuridine were effective in inhibiting dimethyl sulfoxide-induced differentiation. The observation that iso-PrdU, and to a lesser extent n-PrdU and 5-propyldeoxyuridine monophosphate, induce differentiation under conditions in which they are not detectable intracellularly is strong evidence that this class of inducer acts at the cell membrane.[1]

References

 
WikiGenes - Universities