The effect of five fasciolicides on malate dehydrogenase activity and mortality of Fasciola gigantica, Fasciolopsis buski and Paramphistomum explanatum.
The effect of oxyclozanide, hexachlorophene, nitroxynil, rafoxanide and diamphenethide on malate dehydrogenase activity of homogenates of Fasciola gigantica, Fasciolopsis buski and Paramphistomum explanatum was investigated. The ratio of oxaloacetate reduction to malate oxidation in homogenates of Fasciola gigantica, Fasciolopsis buski and P. explanatum was 4.5:1, 3.6:1 and 5.2:1 respectively. Oxyclozanide and rafoxanide at 10(-3) M inhibited enzyme activity by 100% in homogenates from all three species while hexachlorophene at 10(-3) M also caused 100% inhibition in homogenates from Fasciola gagantica and P. explanatum but only 65% of malate oxidation in Fasciolopsis buski homogenates. Nitroxynil at 10(-3) M produced 60% inhibition in F. buski homogenates yet had little effect at this concentration on preparations from the other species. Little inhibition was seen with diamphenethide, even at high concentrations. Rapid death of Fasicola gigantica and P. explanatum resulted in vitro when 10(-3) M oxyclozanide, hexachlorophene, nitroxynil or rafoxanide, were added to the incubation medium. Fasciolopsis buski was killed by 10(-3) M oxyclozanide but at this concentration the remaining compounds only caused reduced activity. Assay of malate dehydrogenase following drug treatment in vitro failed to show any appreciable reduction in enzyme activity in Fasciola gigantica and P. explanatum but oxyclozanide and hexachlorophene produced inhibition in Fasciolopsis buski. The mode of action of these compounds is discussed.[1]References
- The effect of five fasciolicides on malate dehydrogenase activity and mortality of Fasciola gigantica, Fasciolopsis buski and Paramphistomum explanatum. Probert, A.J., Sharma, R.K., Singh, K., Saxena, R. J. Helminthol. (1981) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg