The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin.

N-acetylimidazole (NAI) was used to O-acetylate the plant seed toxin ricin. O-acetylation of one to two tyrosine residues per molecule of ricin inhibited ricin binding to Sepharose 4B and decreased toxicity by 90% in a protein synthesis inhibition assay in HeLa cells. Lactose, known to block the binding site on the ricin B subunit, protected ricin from NAI modification of binding or toxicity. Thus NAI, under these conditions, can be a lactose site-specific inhibitor. The lactose site-specific modification of the hybrid toxin, Man6P-ricin, performed under the same conditions, exhibited the same 90% inhibition of Man6P receptor-mediated toxicity as the galactose-containing receptor-mediated toxicity of either Man6P-ricin or ricin. Thus the ricin B chain lactose-binding site appears to be essential for the high potency of Man6P-ricin via the new cell type-specific Man6P receptor. Treatment of fibroblasts with neuraminidase exposes galactose residues, thus increasing the sensitivity to ricin eight fold. The Man6P receptor-mediated toxicity of Man6P-ricin is not affected by this treatment, although the galactose-inhibited route is potentiated eight fold. The Man6P-ricin hybrid appears to require the ricin B chain galactose-binding site to enter the cytosol after initially binding to the Man6P receptor. These data provide some insights into the proper design of hybrid toxins. We discuss a number of possible models for hybrid toxin entry.[1]

References

  1. Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin. Youle, R.J., Murray, G.J., Neville, D.M. Cell (1981) [Pubmed]
 
WikiGenes - Universities