Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction.
Molecular mechanisms of activity-dependent synapse reduction were studied in an in vitro mammalian neuromuscular preparation. Synapse reduction in this model is activity-dependent and is substantially reduced by the broad-spectrum protease inhibitor, leupeptin, suggesting the role of activity-dependent proteolytic action in the process. Our present experiments show that a potent and specific thrombin inhibitor, hirudin, at nanomolar concentration completely blocked the activity-dependent synapse reduction. Furthermore, a naturally occurring serine protease inhibitor, protease nexin I ( PNI), which closely colocalizes with acetylcholine receptors at the neuromuscular junction, inhibited the synapse reduction at the same low concentration. In contrast, neither cystatin, a cysteine protease inhibitor, nor aprotinin, a serine protease inhibitor that does not inhibit thrombin, blocked the synapse reduction. Similarly, neither of the inhibitors of the calcium-activated proteases calpain I and II prevented the reduction of synapses. These results strongly suggest that serine proteolytic action by thrombin or thrombin-like molecules is required for synapse reduction in our in vitro model of the mammalian neuromuscular junction.[1]References
- Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Liu, Y., Fields, R.D., Festoff, B.W., Nelson, P.G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg