The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The asparagine-linked oligosaccharides of the human chorionic gonadotropin beta subunit facilitate correct disulfide bond pairing.

The role of asparagine (N)-linked oligosaccharide chains in intracellular folding of the human chorionic gonadotropin (hCG)-beta subunit was determined by examining the kinetics of folding in Chinese hamster ovary (CHO) cells transfected with wild-type or mutant hCG-beta genes lacking one or both of the asparagine glycosylation sites. The half-time for folding of p beta 1 into p beta 2, the rate-determining step in beta folding, was 7 min for wild-type beta but 33 min for beta lacking both N-linked glycans. The p beta 1-->p beta 2 half-time was 7.5 min in CHO cells expressing the beta subunit missing the Asn13-linked glycan and 10 min for the beta subunit missing the Asn30-linked glycan. The inefficient folding of hCG-beta lacking both N-linked glycans correlated with the slow formation of the last three disulfide bonds (i.e. disulfides 23-72, 93-100, and 26-110) to form in the hCG-beta-folding pathway. Unglycosylated hCG-beta was slowly secreted from CHO cells, and beta subunit-folding intermediates retained in cells for more than 5 h were degraded into a hCG-beta core fragment-like protein. However, coexpression of the hCG-alpha gene enhanced folding and formation of disulfide bonds 23-72, 93-100, and 26-110 of hCG-beta lacking N-linked glycans. In addition, the molecular chaperones BiP, ERp72, and ERp94, but not calnexin, were found in a complex with unglycosylated, unfolded hCG-beta and may be involved in the folding of this beta form. These data indicate that N-linked oligosaccharides assist hCG-beta subunit folding by facilitating disulfide bond formation.[1]

References

  1. The asparagine-linked oligosaccharides of the human chorionic gonadotropin beta subunit facilitate correct disulfide bond pairing. Feng, W., Matzuk, M.M., Mountjoy, K., Bedows, E., Ruddon, R.W., Boime, I. J. Biol. Chem. (1995) [Pubmed]
 
WikiGenes - Universities