The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Colcemid resistance in murine SEWA cells: non- Pgy gene amplification at low levels of resistance and preferential Pgy2 gene amplification at high levels of resistance.

Mammalian cell lines often become multidrug-resistant to cytotoxic drugs by amplification and/or overexpression of the P-glycoprotein ( Pgy) genes. However, several malignant cell lines seem to acquire low levels of drug resistance by non- P-glycoprotein mediated mechanisms. We report here on cytogenetical signs of non- Pgy gene amplification in murine SEWA cells during the early steps of selection in Colcemid (COL). In line TC13COL0.01, rare cells exhibited a homogeneously staining region (HSR) distally in chromosome 16. As the COL-concentration was raised the HSR-chromosome was retained and, in addition, the cells developed numerous double minutes (DMs). The DMs, but not the HSR, contained amplified Pgy genes. The HSR may correspond to amplified heat shock protein 70 (Hsp70) genes, detected by Southern analysis. A second low-level COL-resistant line, TC13D70.01, contained DMs but showed no amplification of Pgy, Hsp70, Hsp90, alpha- or beta-tubulin genes. In higher COL-concentration, P-glycoprotein mediated drug resistance was induced. In contrast to actinomycin D-resistant SEWA cells, in which higher amplification levels of Pgy1 than of Pgy2 are regularly present, the COL-resistant lines showed a preference for Pgy2 gene amplification. These results are in line with the suggestion that the murine Pgy1 and Pgy2 genes have overlapping but distinct drug specificities.[1]

References

 
WikiGenes - Universities