The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetic mechanism of aminoglycoside phosphotransferase type IIIa. Evidence for a Theorell-Chance mechanism.

Bacterial resistance to aminoglycoside-aminocyclitol antibiotics is mediated primarily by covalent modification of the drugs by a variety of enzymes. One such modifying enzyme, the 3'-aminoglycoside phosphotransferase, which is produced by Gram-positive cocci such as Enterococcus and Streptococcus inactivates a broad range of aminoglycosides by ATP-dependent phosphorylation of specific hydroxyl residues on the antibiotics. Through the use of dead-end and product inhibitor studies, we present the first detailed examination of the kinetic mechanism for the 3'-aminoglycoside phosphotransferase-IIIa. Initial velocity patterns deduced from steady-state kinetics indicate a sequential mechanism with ordered binding of ATP first followed by aminoglycoside. Dead-end inhibition by AMP and adenylyl-imidodiphosphate is competitive versus ATP and noncompetitive versus kanamycin A. Dead-end inhibition by tobramycin, a kanamycin analogue lacking a 3'-OH, is competitive versus both kanamycin A and uncompetitive versus ATP, indicative of ordered substrate binding where ATP must add prior to aminoglycoside addition. Product inhibition by kanamycin phosphate is noncompetitive versus ATP when kanamycin A is held at subsaturating concentrations (Km(kanA)), whereas no inhibition is observed when the concentration of kanamycin A is held at 10Km(kanA). This is consistent with kanamycin phosphate being the first product released followed by ADP release. The patterns of inhibition observed support a mechanism where ATP binding precedes aminoglycoside binding followed by a rapid catalytic step. Product release proceeds in an ordered fashion where kanamycin phosphate is released quickly followed by a slow release of ADP. Aminoglycoside substrates, such as kanamycin A, show substrate inhibition that is uncompetitive versus ATP. This indicates binding of the aminoglycosides to the slowly dissociating (E-ADP) complex at high drug concentrations. These experiments are consistent with a Theorell-Chance kinetic mechanism for 3'-aminoglycoside phosphotransferase-IIIa.[1]

References

 
WikiGenes - Universities