The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Protein ligands of the human adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of wild-type and mutant penton capsomers.

A filamentous phage-displayed random hexapeptide library was screened on the adenovirus type 2 (Ad2) penton capsomer and its separate domains, penton base, full-length fiber, fiber shaft and fiber knob. Affinity supports were designed to immobilize the penton ligate with a preferred orientation, via immuno-adsorption to pre-coated antibody. Three classes of phagotopes were distinguished in the eluates from the penton and fiber domains. (i) The first class represented peptide sequences identified in certain Ad2 capsid proteins, protein IIIa, protein pVIII, penton base and penton fiber. Data from specific ligand elution of phages bound to fiber and penton base wild-types and mutants suggested that the region overlapping the RLSNLLG motif at residues 254-260 in the penton base and the FNPVYP motif at residues 11-16 in the fiber tail formed mutual interacting sites in the penton capsomer. (ii) The second class consisted of phagotopes homologous to peptide sequences found in host cell membrane proteins involved in receptor or adhesion functions. One of the most abundant species corresponded to a conserved motif present in the beta-strand B of type III modules of human fibronectin. In addition, phages which were screened for their failure to bind to penton base RGD mutants were found to carry consensus motifs to peptide sequences present in the RGD recognition site of human integrin beta subunits. (iii) The third class comprised peptide motifs common to both viral and cellular proteins, suggesting that a mechanism of ligand exchange could occur during virus entry and uncoating, and virus assembly and release.[1]


WikiGenes - Universities