The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells.

Paclitaxel was examined for its effects on cell survival, internucleosomal DNA fragmentation, and protein isoprenylation in the human prostate cancer cell line PC-3. Treatment of cells with paclitaxel at 5-60 nM for 24 hr resulted in a dose-dependent inhibition of cell viability (IC50, 31.2 nM), which was partially prevented by supplementing the cell culture medium with two nonsterol polyisoprenyl compounds, farnesyl-pyrophosphate (-PP) and geranylgeranyl-PP (3 microM each). Furthermore, agarose gel electrophoresis of DNA extracted from cells treated with paclitaxel (15-60 nM) for 24 hr showed DNA laddering with production of fragments of 180-base pair multiples, indicating the occurrence of apoptotic cell death. Internucleosomal DNA fragmentation by paclitaxel was also detected by a photometric enzyme immunoassay using antihistone antibodies; if culture medium was supplemented with farnesyl-PP and geranylgeranyl-PP (3 microM each), a reduction in mono- and oligonucleosome production was observed. The post-translational incorporation of metabolites of (RS)-[5-3H]mevalonolactone (100 microCi/ml) into prenylated proteins of PC-3 cells was inhibited by paclitaxel at 30 and 60 nM. In addition, the immunoprecipitation of p21ras and p21rap-1 proteins from PC-3 cells exposed to paclitaxel (30 and 60 nM) and labeled with (RS)-[5-3H]mevalonolactone showed a substantial inhibition of the incorporation of farnesyl and geranylgeranyl prenoid groups, respectively, into the aforementioned proteins. These results indicate that the inhibition of protein isoprenylation is a novel component of the complex biochemical effects of the drug and plays an important role in the mechanism of paclitaxel cytotoxicity in PC-3 cells.[1]


WikiGenes - Universities