The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of diphenhydramine on human eye movements.

Peak saccadic eye movement velocity (SEV) and average smooth pursuit gain (SP) are reduced in a dose-dependent manner by diazepam and provide reliable, quantitative measures of benzodiazepine agonist effects. To evaluate the specificity of these eye movement effects for agents acting at the central GABA-benzodiazepine receptor complex and the role of sedation in benzodiazepine effects, we studied eye movement effects of diphenhydramine, a sedating drug which does not act at the GABA-benzodiazepine receptor complex. Ten healthy males, aged 19-28 years, with no history of axis I psychiatric disorders or substance abuse, received 50 mg/70 kg intravenous diphenhydramine or a similar volume of saline on separate days 1 week apart. SEV, saccade latency and accuracy, SP, self-rated sedation, and short-term memory were assessed at baseline and at 5, 15, 30, 45, 60, 90 and 120 min after drug administration. Compared with placebo, diphenhydramine produced significant SEV slowing, and increases in saccade latency and self-rated sedation. There was no significant effect of diphenhydramine on smooth pursuit gain, saccade accuracy, or short-term memory. These results suggest that, like diazepam, diphenhydramine causes sedation, SEV slowing, and an increase in saccade latency. Since the degree of diphenhydramine-induced sedation was not correlated with changes in SEV or saccade latency, slowing of saccadic eye movements is unlikely to be attributable to sedation alone. Unlike diazepam, diphenhydramine does not impair smooth pursuit gain, saccadic accuracy, or memory. Different neurotransmitter systems may influence the neural pathways involved in SEV and smooth pursuit again.[1]


  1. Effects of diphenhydramine on human eye movements. Hopfenbeck, J.R., Cowley, D.S., Radant, A., Greenblatt, D.J., Roy-Byrne, P.P. Psychopharmacology (Berl.) (1995) [Pubmed]
WikiGenes - Universities