The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture.

Recent studies have demonstrated the protective effects of supplementing free oxygen radical scavenging enzymes against hyperglycemia-induced embryonic malformations. In this study, the glutathione (GSH)-dependent protection system in hyperglycemia-induced embryopathy was investigated. Rat embryos at the early head-fold stage (day 9.5) cultured in 66.7 mmol/l glucose for 48 h showed significant growth retardation and an increase in the frequency of malformations. The concentration of GSH and activity of the rate-limiting GSH-synthesizing enzyme, gamma-glutamylcysteine synthetase (gamma-GCS), significantly decreased in embryos exposed to hyperglycemia compared with controls (7.9 +/- 0.6 vs. 12.5 +/- 0.9 nmol/mg protein, P < 0.01 and 13.3 +/- 1.9 vs. 22.6 +/- 1.1 microU/mg protein, P < 0.01, respectively). Decreased activity of gamma-GCS in embryos exposed to hyperglycemia was associated with decreased expression of gamma-GCS mRNA levels. However, the activities of superoxide dismutase and glutathione peroxidase did not significantly change in these embryos. Extracellular and intracellular free oxygen radical formations estimated by Lucigenin-dependent chemoluminescence and flow cytometric analysis using 2',7'-dichlorofluorescein diacetate increased in isolated embryonic cells taken from embryos cultured under hyperglycemia. Supplementation of 2 mmol/l GSH ester into the hyperglycemic culture nearly restored GSH concentration in these embryos (11.9 +/- 0.5 vs. 12.5 +/- 0.9 nmol/mg protein) and reduced the formation of free oxygen radical species leading to almost complete normalization of growth retardation and embryonic dysmorphogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


  1. Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Trocino, R.A., Akazawa, S., Ishibashi, M., Matsumoto, K., Matsuo, H., Yamamoto, H., Goto, S., Urata, Y., Kondo, T., Nagataki, S. Diabetes (1995) [Pubmed]
WikiGenes - Universities