The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells.

Recent studies have shown that the Bcl-2 protein suppresses programmed cell death or apoptosis induced by a variety of stimuli including chemotherapeutic drugs. Because estrogen promotes the survival of estrogen-dependent breast cancer cells in vivo, we investigated whether estrogen might regulate levels of Bcl-2 gene expression in an estrogen-responsive human breast cancer cell line. Estrogen receptor-positive MCF-7 human breast cancer cells cultured in the presence of estrogen express the 8.5-kb Bcl-2 mRNA transcript. Depletion of estrogen from the medium results in loss of expression of the mRNA, whereas reexposure to estrogen markedly induces the Bcl-2 transcript. The changes in Bcl-2 mRNA are paralleled by changes in Bcl-2 protein levels. Estrogen-induced increases in Bcl-2 are significantly inhibited by inclusion of the pure antiestrogen ICI 164,384 in the medium. The Bax protein that heterodimerizes with Bcl-2 and promotes cell death is expressed in MCF-7 cells grown in the presence of estrogen and is unaffected by culture in estrogen-free medium. Estrogen depletion doubles the sensitivity of MCF-7 cells to the cytotoxic effects of Adriamycin compared with cells cultured in medium supplemented with estrogen, consistent with a decrease in the Bcl-2 levels. MCF-7 cells treated simultaneously with estrogen and ICI 164,384 exhibit markedly lower resistance to Adriamycin compared with cells treated with estrogen alone. In the absence of estrogen, MCF-7 cells transfected with Bcl-2 expression plasmids display a marked increase in resistance to Adriamycin. In the presence of estrogen, MCF-7 cells expressing Bcl-2 antisense transcripts are rendered twice as sensitive to acute Adriamycin cytotoxicity as a control clone. We conclude that estrogen can promote resistance of estrogen receptor bearing human breast cancer cells to chemotherapeutic drugs through a mechanism that involves regulation of the Bcl-2 proto-oncogene.[1]

References

 
WikiGenes - Universities