The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence that actin depolymerization protects hippocampal neurons against excitotoxicity by stabilizing [Ca2+]i.

Calcium influx through glutamate receptors and voltage-dependent channels mediates an array of functional and structural responses in neurons. However, unrestrained Ca2+ influx can injure and kill neurons; a mechanism implicated in both acute and chronic neurodegenerative disorders. Data reported here indicate that depolymerization of actin filaments can stabilize intracellular free calcium levels ([Ca2+]i) and protect hippocampal neurons against excitotoxic injury. Studies with fluorescein-labeled phalloidin showed that cytochalasin D and glutamate each induced actin filament depolymerization. The microfilament-disrupting agent cytochalasin D protected cultured rat hippocampal neurons against glutamate toxicity, whereas the actin filament-stabilizing agent jasplakinolide potentiated glutamate toxicity. The microtubule-disrupting agent colchicine was ineffective in protecting neurons against glutamate toxicity. Cytochalasin D did not protect neurons against calcium ionophore toxicity or iron toxicity, indicating that its actions were not due to nonspecific effects on Ca2+ or free radical metabolism. Cytochalasin D markedly attenuated kainate-induced damage to hippocampus of adult rats, suggesting an excitoprotective role for actin depolymerization in vivo. Elevations of [Ca2+]i induced by glutamate were attenuated in cultured hippocampal neurons pretreated with cytochalasin D and potentiated in neurons pretreated with jasplakinolide. The [Ca2+]i response to a Ca2+ ionophore was unaffected by cytochalasin D, suggesting that actin depolymerization reduced Ca2+ influx through membrane channels. Taken together with previous patch clamp data, our findings suggest that depolymerization of actin in response to Ca2+ influx may serve as a feedback mechanism to attenuate potentially toxic levels of Ca2+ influx.[1]

References

 
WikiGenes - Universities