The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

GABA receptor molecules of insects.

Receptors for 4-aminobutyric acid (GABA) have been identified in both central and peripheral nervous systems of several invertebrate phyla. To date, much of the information derived from physiological and biochemical studies on insect GABA receptors relates to GABA-gated chloride channels that show some similarities with vertebrate GABAA receptors. Like their vertebrate central nervous system (CNS) counterparts, agonist activation of such insect GABA receptors leads to a rapid, picrotoxin-sensitive increase in chloride ion conductance across the cell membrane. In insects, responses to GABA can be modulated by certain benzodiazepines and barbiturates. However, recent studies have detected a number of striking pharmacological differences between GABA-gated chloride channels of insects and vertebrates. Receptor binding, electrophysiological and 36Cl- flux assays have indicated that many insect receptors of this type are insensitive to the vertebrate GABAA antagonists bicuculline and pitrazepin. Benzodiazepine binding sites coupled to insect GABA receptors display a pharmacological profile distinct from that of corresponding sites in vertebrate CNS. Receptor binding studies have also demonstrated differences between convulsant binding sites of insect and vertebrate receptors. Insect GABA receptor molecules are important target sites for several chemically-distinct classes of insecticidally-active molecules. By characterizing these pharmacological properties in detail, it may prove possible to exploit differences between vertebrate and insect GABA receptors in the rational design of novel, more selective pest control agents. The recent application of the powerful techniques of molecular biology has revealed a diversity of vertebrate GABAA receptor subunits and their respective isoforms that can assemble in vivo to form a multiplicity of receptor subtypes. Molecular cloning of insect GABA receptor subunits will not only enhance our understanding of invertebrate neurotransmitter receptor diversity but will also permit the precise identification of the sites of action of pest control agents.[1]


  1. GABA receptor molecules of insects. Anthony, N.M., Harrison, J.B., Sattelle, D.B. EXS. (1993) [Pubmed]
WikiGenes - Universities