The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enhancement of cellular accumulation of cyclosporine by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance.

BACKGROUND: Drug resistance is a major obstacle to successful cancer chemotherapy. P-glycoprotein, which transports certain antitumor agents out of resistant tumor cells, is known to be a major factor in some types of multidrug resistance. Studies have shown that verapamil and the immunosuppressors cyclosporine and FK-506 can reverse multidrug resistance in vitro and in vivo and that the P-glycoprotein monoclonal antibody MRK-16 increases drug toxicity in multidrug-resistant tumors. PURPOSE: The purpose of this in vitro study was to establish effective treatment modalities for overcoming multidrug resistance. We assessed the synergistic effects of verapamil, cyclosporine, or FK-506 in combination with MRK-16 and antitumor agents. METHODS: Human myelogenous leukemia K562 cells and multidrug-resistant K562/ADM cells were treated with vincristine or doxorubicin combined with MRK-16 and cyclosporine alone or together; MRK-16 and verapamil alone or together; or MRK-16 and FK-506. The effects of MRK-16 and cyclosporine or verapamil on the accumulation of vincristine and doxorubicin were examined in K562/ADM cells, and the mechanisms of action were analyzed. RESULTS: MRK-16 and cyclosporine synergistically enhanced the antitumor effects of vincristine and of doxorubicin in K562/ADM cells. However, the combined use of MRK-16 with verapamil or FK-506 did not show such synergistic effects in these cells. Studies of the effect of MRK-16 on cellular accumulation of cyclosporine and verapamil revealed that MRK-16 substantially increased accumulation of cyclosporine in K562/ADM cells, but did not increase accumulation of verapamil. CONCLUSIONS: MRK-16 and cyclosporine synergistically enhanced the antitumor effects of vincristine and doxorubicin because MRK-16 increased cellular accumulation of cyclosporine. IMPLICATIONS: These results, together with our previous finding that intravenous administration of MRK-16 induced regression of multidrug-resistant subcutaneous tumors in athymic mice, support the hypothesis that the combined use of MRK-16 and cyclosporine might increase the efficacy of antitumor agents against multidrug-resistant tumors expressing P-glycoprotein. Clinical phase I trials of MRK-16 in the treatment of multidrug-resistant tumors are under consideration.[1]

References

  1. Enhancement of cellular accumulation of cyclosporine by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance. Naito, M., Tsuge, H., Kuroko, C., Koyama, T., Tomida, A., Tatsuta, T., Heike, Y., Tsuruo, T. J. Natl. Cancer Inst. (1993) [Pubmed]
 
WikiGenes - Universities