The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

K562 Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of K562 Cells

 

High impact information on K562 Cells

  • K562 cells may have unmasked its associated tyrosine kinase activity [6].
  • Haemin treatment of the K562 cells slightly enhances the level of the longest theta 1-transcript [7].
  • Moreover, purified renin substrate, like erythropoietin, causes the dose-dependent increase of haemoglobin F in cultured human erythroid leukaemia K562 cells [8].
  • Furthermore, restoration of ISG15 conjugation in protein ISGylation-defective K562 cells increases IFN-stimulated promoter activity [9].
  • Our results show that the ARE destabilizing function is dramatically impeded during hemin-induced erythroid differentiation and not in TPA-induced megakaryocytic differentiation of human erythroleukemic K562 cells [10].
 

Chemical compound and disease context of K562 Cells

 

Biological context of K562 Cells

 

Anatomical context of K562 Cells

  • CX3CR1-transfected K562 cells, but not control K562 cells, firmly adhered to FKN-expressing ECV-304 cells (ECV-FKN) and tumor necrosis factor alpha-activated human umbilical vein endothelial cells [21].
  • The transferred human beta globin gene was not expressed in either K562 cells or fibroblasts [22].
  • In contrast to cells cotransfected with alpha1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow [23].
  • Neutralizing antitumor necrosis factor (TNF) monoclonal antibodies (MoAbs) were found capable of inhibiting CIA present in the supernatants of NK cells stimulated with K562 cells [24].
  • When the etoposide dose was increased to 68 mu mol/L, apoptotic changes were evident in HL-60 cells after 2 to 3 hours, whereas the same changes were observed in K562 cells after 24 to 48 hours [25].
 

Associations of K562 Cells with chemical compounds

  • In addition, treatment of K562 cells with higher concentrations of glutaraldehyde for longer periods led to varying degrees of target antigen preservation, as measured in cold target competition assays and in conjugate formation [26].
  • K562 cells were exposed to 0.25-2.0 micrograms of doxorubicin/mL for up to 60 minutes at 37 degrees C. Commencing within 15 minutes, leukoregulin increased the entry of doxorubicin approximately twofold and the uptake of mitomycin, mithramycin, and propidium iodide twofold to tenfold [27].
  • A detailed analysis of the reaction between the double-labelled acetaldehyde-albumin complexes and K562 cells revealed that the cytotoxic activity resulted from the release of acetaldehyde from such complexes and the preferential binding of the free acetaldehyde to the target cells [28].
  • Radiolabeled OKT9 is itself degraded by K562 cells and this degradation is inhibitable by leupeptin or chloroquine [29].
  • We describe a cDNA encoding a serine proteinase inhibitor present in placental tissue and the cytosolic fraction of K562 cells [30].
 

Gene context of K562 Cells

  • Increasing the level of SCL expression in two independent MEL lines (F4-6 and C19, a 745 derivative) and K562 cells increased the rate of spontaneous (i.e. in the absence of inducer) erythroid differentiation [31].
  • By immunoprecipitation from transfected K562 cells, we established that CD151 associates with alpha3beta1 and alpha6beta4 [32].
  • TfR and TfR2 have similar cellular localizations in K562 cells and coimmunoprecipitate to only a very limited extent [33].
  • Stimulation of K562 cells with EMP upregulated EPO expression [34].
  • Interestingly, we find that simultaneous activation of both HSF2 and HSF1 in K562 cells subjected to hemin treatment followed by heat shock results in the synergistic induction of hsp70 gene transcription, suggesting a novel level of complex regulation of heat shock gene expression [35].
 

Analytical, diagnostic and therapeutic context of K562 Cells

References

  1. Acquired iron-deficiency anemia caused by an antibody against the transferrin receptor. Larrick, J.W., Hyman, E.S. N. Engl. J. Med. (1984) [Pubmed]
  2. Cytotoxicity of antibody-directed liposomes that recognize two receptors on K562 cells. Bragman, K.S., Heath, T.D., Papahadjopoulos, D. J. Natl. Cancer Inst. (1984) [Pubmed]
  3. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Fang, G., Kim, C.N., Perkins, C.L., Ramadevi, N., Winton, E., Wittmann, S., Bhalla, K.N. Blood (2000) [Pubmed]
  4. Improved transfer of the leukocyte integrin CD18 subunit into hematopoietic cell lines by using retroviral vectors having a gibbon ape leukemia virus envelope. Bauer, T.R., Miller, A.D., Hickstein, D.D. Blood (1995) [Pubmed]
  5. Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Zhou, W., Clouston, D.R., Wang, X., Cerruti, L., Cunningham, J.M., Jane, S.M. Mol. Cell. Biol. (2000) [Pubmed]
  6. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Konopka, J.B., Watanabe, S.M., Witte, O.N. Cell (1984) [Pubmed]
  7. Structure and expression of the human theta 1 globin gene. Hsu, S.L., Marks, J., Shaw, J.P., Tam, M., Higgs, D.R., Shen, C.C., Shen, C.K. Nature (1988) [Pubmed]
  8. Is renin substrate an erythropoietin precursor? Fyhrquist, F., Rosenlöf, K., Grönhagen-Riska, C., Hortling, L., Tikkanen, I. Nature (1984) [Pubmed]
  9. Protein ISGylation modulates the JAK-STAT signaling pathway. Malakhova, O.A., Yan, M., Malakhov, M.P., Yuan, Y., Ritchie, K.J., Kim, K.I., Peterson, L.F., Shuai, K., Zhang, D.E. Genes Dev. (2003) [Pubmed]
  10. Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Loflin, P., Chen, C.Y., Shyu, A.B. Genes Dev. (1999) [Pubmed]
  11. Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Marie, J.P., Zittoun, R., Sikic, B.I. Blood (1991) [Pubmed]
  12. Effects of alterations in cellular iron on biosynthesis of the transferrin receptor in K562 cells. Rao, K.K., Shapiro, D., Mattia, E., Bridges, K., Klausner, R. Mol. Cell. Biol. (1985) [Pubmed]
  13. The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells. Richardson, D.R., Neumannova, V., Nagy, E., Ponka, P. Blood (1995) [Pubmed]
  14. Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia. Gandhi, V., Kemena, A., Keating, M.J., Plunkett, W. Cancer Res. (1992) [Pubmed]
  15. The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading, and homotypic cell aggregation. Weitzman, J.B., Pasqualini, R., Takada, Y., Hemler, M.E. J. Biol. Chem. (1993) [Pubmed]
  16. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. Schrager, H.M., Albertí, S., Cywes, C., Dougherty, G.J., Wessels, M.R. J. Clin. Invest. (1998) [Pubmed]
  17. Inducible transcription of five globin genes in K562 human leukemia cells. Dean, A., Ley, T.J., Humphries, R.K., Fordis, M., Schechter, A.N. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  18. K562 human erythroleukemia cell variants resistant to growth inhibition by butyrate have deficient histone acetylation. Ohlsson-Wilhelm, B.M., Farley, B.A., Kosciolek, B., La Bella, S., Rowley, P.T. Am. J. Hum. Genet. (1984) [Pubmed]
  19. A beta-globin gene, inactive in the K562 leukemic cell, functions normally in a heterologous expression system. Fordis, C.M., Anagnou, N.P., Dean, A., Nienhuis, A.W., Schechter, A.N. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  20. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. George, P., Bali, P., Annavarapu, S., Scuto, A., Fiskus, W., Guo, F., Sigua, C., Sondarva, G., Moscinski, L., Atadja, P., Bhalla, K. Blood (2005) [Pubmed]
  21. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. Fong, A.M., Robinson, L.A., Steeber, D.A., Tedder, T.F., Yoshie, O., Imai, T., Patel, D.D. J. Exp. Med. (1998) [Pubmed]
  22. Stable gene transfer and tissue-specific expression of a human globin gene using adenoviral vectors. Karlsson, S., Van Doren, K., Schweiger, S.G., Nienhuis, A.W., Gluzman, Y. EMBO J. (1986) [Pubmed]
  23. Dimerization of P-selectin glycoprotein ligand-1 (PSGL-1) required for optimal recognition of P-selectin. Snapp, K.R., Craig, R., Herron, M., Nelson, R.D., Stoolman, L.M., Kansas, G.S. J. Cell Biol. (1998) [Pubmed]
  24. Production of colony-stimulating activity by human natural killer cells: analysis of the conditions that influence the release and detection of colony-stimulating activity. Pistoia, V., Zupo, S., Corcione, A., Roncella, S., Matera, L., Ghio, R., Ferrarini, M. Blood (1989) [Pubmed]
  25. Comparison of caspase activation and subcellular localization in HL-60 and K562 cells undergoing etoposide-induced apoptosis. Martins, L.M., Mesner, P.W., Kottke, T.J., Basi, G.S., Sinha, S., Tung, J.S., Svingen, P.A., Madden, B.J., Takahashi, A., McCormick, D.J., Earnshaw, W.C., Kaufmann, S.H. Blood (1997) [Pubmed]
  26. Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. Helfand, S.L., Werkmeister, J., Roder, J.C. J. Exp. Med. (1982) [Pubmed]
  27. Tumor-inhibitory antibiotic uptake facilitated by leukoregulin: a new approach to drug delivery. Evans, C.H., Baker, P.D. J. Natl. Cancer Inst. (1988) [Pubmed]
  28. Circulating cytotoxic protein generated after ethanol consumption: identification and mechanism of reaction with cells. Wickramasinghe, S.N., Gardner, B., Barden, G. Lancet (1987) [Pubmed]
  29. Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor. Weissman, A.M., Klausner, R.D., Rao, K., Harford, J.B. J. Cell Biol. (1986) [Pubmed]
  30. Cloning and molecular characterization of a human intracellular serine proteinase inhibitor. Coughlin, P., Sun, J., Cerruti, L., Salem, H.H., Bird, P. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  31. The SCL gene product: a positive regulator of erythroid differentiation. Aplan, P.D., Nakahara, K., Orkin, S.H., Kirsch, I.R. EMBO J. (1992) [Pubmed]
  32. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. Sterk, L.M., Geuijen, C.A., Oomen, L.C., Calafat, J., Janssen, H., Sonnenberg, A. J. Cell Biol. (2000) [Pubmed]
  33. Heterotypic interactions between transferrin receptor and transferrin receptor 2. Vogt, T.M., Blackwell, A.D., Giannetti, A.M., Bjorkman, P.J., Enns, C.A. Blood (2003) [Pubmed]
  34. Human hematopoietic progenitors express erythropoietin. Stopka, T., Zivny, J.H., Stopkova, P., Prchal, J.F., Prchal, J.T. Blood (1998) [Pubmed]
  35. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Sistonen, L., Sarge, K.D., Morimoto, R.I. Mol. Cell. Biol. (1994) [Pubmed]
  36. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. Yago, T., Leppänen, A., Qiu, H., Marcus, W.D., Nollert, M.U., Zhu, C., Cummings, R.D., McEver, R.P. J. Cell Biol. (2002) [Pubmed]
  37. Anti-K562 cell monoclonal antibodies recognize hematopoietic progenitors. Young, N.S., Hwang-Chen, S.P. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  38. delta-Aminolevulinate dehydratase in human erythroleukemia cells: an immunologically distinct enzyme. Chang, C.S., Sassa, S. Blood (1985) [Pubmed]
  39. Loading of DNA-binding factors to an erythroid enhancer. Wen, S.C., Roder, K., Hu, K.Y., Rombel, I., Gavva, N.R., Daftari, P., Kuo, Y.Y., Wang, C., Shen, C.K. Mol. Cell. Biol. (2000) [Pubmed]
 
WikiGenes - Universities