The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glucose-6-phosphatase proteins of the endoplasmic reticulum.

Hepatic glucose-6-phosphatase (G-6-Pase) catalyses the terminal step of hepatic glucose production and it plays a key role in the maintenance of blood glucose homeostasis. Hepatic G-6-Pase is an integral resident endoplasmic reticulum (ER) protein and it is part of a multicomponent system. Its active site is situated inside the lumen of the ER and transport proteins are needed to allow its substrates, glucose-6-phosphate (G-6-P) (and pyrophosphate), and its products, phosphate and glucose to cross the ER membrane. In addition, a calcium-binding protein is also associated with the G-6-Pase enzyme. Recent immunological studies have shown that G-6-Pase (which has conventionally been thought to be present only in the gluconeogenic organs) is present in minor cell types in a variety of human tissues and that its distribution changes dramatically during human development. In all the tissues, enzymatic analysis, direct transport assays and/or immunological detection of the ER glucose and phosphate transport proteins have been used to demonstrate the presence and activity of the whole G-6-Pase system. The G-6-Pase protein is very hydrophobic and has proved difficult to purify to homogeneity. Four proteins of the system have now been isolated and polyclonal antibodies have been raised against them; two have also been cloned. The available sequences, together with topological studies, have given some information about both the topology of the proteins in the ER and the probable mechanisms by which the proteins are retained in the ER.[1]


  1. Glucose-6-phosphatase proteins of the endoplasmic reticulum. Burchell, A., Allan, B.B., Hume, R. Mol. Membr. Biol. (1994) [Pubmed]
WikiGenes - Universities