The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons.

We have examined the regulation of transcription factor gene expression and phenotypic markers in developing chick sympathetic neurons. Sympathetic progenitor cells first express the bHLH transcriptional regulator Cash-1 (a chicken achaete-scute homologue), followed by coordinate expression of Phox2, a paired homeodomain protein, and GATA-2, a zinc finger protein. SCG10, a pan-neuronal membrane protein, is first detected one stage later, followed by the catecholaminergic neurotransmitter enzyme tyrosine hydroxylase (TH). We have used these markers to ask two questions: (1) is their expression dependent upon inductive signals derived from the notochord or floor plate?; (2) does their sequential expression reflect a single linear pathway or multiple parallel pathways? Notochord ablation experiments indicate that the floor plate is essential for induction of GATA-2, Phox2 and TH, but not for that of Cash-1 and SCG10. Taken together these data suggest that the development of sympathetic neurons involves multiple transcriptional regulatory cascades: one, dependent upon notochord or floor plate-derived signals and involving Phox2 and GATA-2, is assigned to the expression of the neurotransmitter phenotype; the other, independent of such signals and involving Cash-1, is assigned to the expression of pan-neuronal properties. The parallel specification of different components of the terminal neuronal phenotype is likely to be a general feature of neuronal development.[1]

References

  1. Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Groves, A.K., George, K.M., Tissier-Seta, J.P., Engel, J.D., Brunet, J.F., Anderson, D.J. Development (1995) [Pubmed]
 
WikiGenes - Universities