The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structure, expression and duplication of genes which encode phosphoglyceromutase of Drosophila melanogaster.

We report here the isolation and characterization of genes from Drosophila that encode the glycolytic enzyme phosphoglyceromutase (PGLYM). Two genomic regions have been isolated that have potential to encode PGLYM. Their cytogenetic localizations have been determined by in situ hybridization to salivary gland chromosomes. One gene, Pglym78, is found at 78A/B and the other, Pglym87, at 87B4,5 of the Drosophila polytene map. Pglym78 transcription follows a developmental pattern similar to other glycolytic genes in Drosophila, i.e., substantial maternal transcript deposited during oogenesis; a decline in abundance in the first half of embryogenesis; a subsequent increase in the second half of embryogenesis which continues throughout larval life; a decline in pupae and a second increase to a plateau in adults. This transcript has been mapped by cDNA and genomic sequence comparison, RNase protection, and primer extension. Using similar analyses transcripts of Pglym87 could not be detected. Pglym78 has two introns which interrupt the coding region, while the Pglym87 gene lacks introns. This and other features support a model of retrotransposition mediated gene duplication for the origin of Pglym87. The apparent absence of a complete, intact coding frame and transcript suggest that Pglym87 is a pseudogene. However, retention of reading frame and codon bias suggests that Pglym87 may retain coding function, or may have been inactivated recently, substantially after the time of duplication, or that the molecular evolution of Pglym87 is unusual. Similarities of the unusual molecular evolution of Pglym87 and other proposed pseudogenes are discussed.[1]


WikiGenes - Universities