The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans.

Resistance to antimitotic chemotherapeutics in pathogenic nematodes, fungi and mammalian cells is closely associated with structural changes in cytoskeletal beta-tubulin. We investigated the possibility of using the well-characterised free-living nematode Caenorhabditis elegans as a model for studying the mechanism of resistance against benzimidazole (BZ) drugs in the parasitic nematode Haemonchus contortus. Functional analysis of a conserved beta-tubulin isotype ( tub-1) mutation near GTP-binding domain II, which is linked to BZ resistance, was carried out in C. elegans by heterologous expression of: (1) parasite BZ-sensitive alleles; (2) BZ-resistant alleles; and (3) in vitro mutagenised beta-tubulin gene constructs. The injected heterologous gene constructs were not only stably maintained, but also expressed as shown by reverse transcriptase-polymerase chain reaction analysis. The degree of BZ drug susceptibility of the transformants was assayed and quantified by incubation with both benomyl and thiabendazol. All H. contortus tub-1 constructs, which encoded Phe at position 200, conferred susceptibility to thiabendazole in BZ-resistant C. elegans ben-1 mutants. In contrast, constructs carrying Tyr200 did not alter the BZ drug phenotype. From these experiments we conclude that: (1) C. elegans can be used as an expression host, since injected parasite genes were biologically active; and (2) the single Phe to Tyr mutation at position 200 in beta-tubulin isotype 1 is the cause of BZ resistance in H. contortus.[1]

References

 
WikiGenes - Universities