The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Immaturity-dependent free radical activity in premature infants.

To examine the role of immaturity in the free radical-mediated rate of lipid peroxidation in premature infants, we studied 27 infants [gestational age, 27.1 (SD 2.4) wk; birth weight, 970 (SD 330) g]. Ethane and pentane were quantitated in expired air during the first 18 d of life. During the first 2 postnatal d ethane [24.1 (SEM 7.8) pmol x kg-1 x min-1] and pentane [24.2 (SEM 4.1) pmol x kg-1 x min-1] were stable but increased during d 5 to maxima of 79.1 (15.8) pmol x kg-1 x min-1 and 62.1 (8.1) pmol x kg-1 x min-1, respectively. Maximum ethane and pentane correlated with gestational age (r = -0.42, p = 0.03 and r = -0.52, p = 0.005, respectively) and birth weight (r = -0.38, p = 0.05 and r = -0.59, p = 0.001, respectively). Infants with high maximum expired ethane and pentane (exceeding 40 pmol x kg-1 x min-1) had higher odds of dying or having bronchopulmonary dysplasia than those with low ethane and pentane (odds ratio, 6.5; 95% confidence interval, 1.1 to 38.5; p < 0.05 for ethane and odds ratio, 5.6; 95% confidence interval, 1.1 to 29.3; p < 0.05 for pentane). We conclude that degree of prematurity is the single most important factor explaining free radical-mediated lipid peroxidation in premature infants. A therapeutic intervention to limit the effects of free radicals should be started during the 1st postnatal d in premature infants to be effective.[1]

References

  1. Immaturity-dependent free radical activity in premature infants. Varsila, E., Pitkänen, O., Hallman, M., Andersson, S. Pediatr. Res. (1994) [Pubmed]
 
WikiGenes - Universities