The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific delta-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley.

In 1945, Thomas Cooley described the first cases of X-linked sideroblastic anemia (XLSA) in two brothers from a large family in which the inheritance of the disease was documented through six generations. Almost 40 years later the enzymatic defect in XLSA was identified as the deficient activity of the erythroid-specific form of delta-aminolevulinate synthase (ALAS2), the first enzyme in the heme biosynthetic pathway. To determine the nature of the mutation in the ALAS2 gene causing XLSA in Cooley's original family, genomic DNAs were isolated from two affected hemizygotes, and each ALAS2 exon was PCR amplified and sequenced. A single transversion (A to C) was identified in exon 5. The mutation predicted the substitution of leucine for phenylalanine at residue 165 (F165L) in the first highly conserved domain of the ALAS2 catalytic core shared by all species. No other nucleotide changes were found by sequencing each of the 11 exons, including intron/exon boundaries, 1 kb of 5'-flanking and 350 nucleotides of 3'-flanking sequence. The mutation introduced an Mse I site and restriction analysis of PCR-amplified genomic DNA confirmed the presence of the lesion in the two affected brothers and in three obligate heterozygotes from three generations of this family. Carrier diagnosis of additional family members identified the mutation in one of the proband's sisters. After prokaryotic expression and affinity purification of both mutant and normal ALAS2 fusion proteins, the specific activity of the F165L mutant enzyme was about 26% of normal. The cofactor, pyridoxal 5'-phosphate, activated and/or stabilized the purified mutant recombinant enzyme in vitro, consistent with the pyridoxine-responsive anemia in affected hemizygotes from this family.[1]

References

 
WikiGenes - Universities