The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Signal transduction for nuclear factor-kappa B activation. Proposed location of antioxidant-inhibitable step.

Reactive oxygen species are thought to be messengers for nuclear factor (NF)-kappa B activation because its activation can be abrogated by antioxidants. However, this study identifies, for the first time, NF-kappa B activators that are insensitive to antioxidants. NF-kappa B activation that is induced by either calyculin A or okadaic acid (inhibitors of serine/threonine protein phosphatases 1 and 2A) is not blocked by N-acetylcysteine or dihydrolipoate in Jurkat and U937 cells. Nonetheless, these antioxidants block induction by TNF-alpha, lymphotoxin, and PMA. Unlike okadaic acid and calyculin A, neither TNF-alpha, lymphotoxin, nor PMA inhibited activities of phosphatases 1 and 2A. NF-kappa B activation induced by okadaic acid or calyculin A was not blocked by a myosin light chain kinase inhibitor, but was prevented by a protease inhibitor. The mitochondrial inhibitor, rotenone, also inhibited NF-kappa B activation by calyculin A; however, this inhibition was accompanied by a depletion of cellular ATP. These results suggest that 1) phosphatase inhibitors either target a component of signal transduction, which occurs downstream to an antioxidant-sensitive step or use distinct signaling pathways; 2) inhibition of phosphatases 1 and 2A is not a step in the pathway of TNF-alpha-, lymphotoxin-, or PMA-induced NF-kappa B activation; 3) myosin light chain kinase does not participate in NF-kappa B activation; and 4) activation of NF-kappa B by phosphatase inhibitors is controlled by proteases.[1]


WikiGenes - Universities