Dexamethasone-induced hyperglycemia in obese Avy/a (viable yellow) female mice entails preferential induction of a hepatic estrogen sulfotransferase.
Sex steroid sulfotransferases ( ST) sulfurylate and thus inactivate estrogens or androgens, producing an androgenized or estrogenized state in the liver. The expression of diabetes in a number of animal models is sexually dimorphic and has been associated with steroidal states. Although the viable yellow (Avy) mutation produces an insulin-resistant obesity syndrome in mice of both sexes, only males develop chronic hyperglycemia. Hyperglycemia was rapidly induced in Avy/a females by dexamethasone (dex). This treatment completely suppressed both endogenous plasma corticosterone and hepatic corticosterone-binding globulin ( CBG) mRNA within 24 h. Hyperglycemia in dex-implanted Avy/a females was accompanied by aberrant shifts in hepatic androgen/estrogen balance. This was effected by induction of estrogen sulfotransferase (EST) mRNA together with a > 10-fold increase in enzymatic activity. Similar dex-induced increases in androgen ST or phenol ST were not observed. Prior implantation of estrogen prevented development of hyperglycemia. The time-dependent spontaneous reversal of dex-induced hyperglycemia correlated with re-expression of CBG mRNA transcripts and reduced levels of EST transcripts and enzyme activity. Although dex-induced hyperglycemia was limited to Avy/a females, dex elicited hyperinsulinemia in lean a/a control mice of both sexes and exacerbated constitutive hyperinsulinemia in Avy/a males and females. In summary, dex-induced hyperglycemia in Avy/a females was associated with increased catabolism of hepatic estrogens mediated by induction of EST.[1]References
- Dexamethasone-induced hyperglycemia in obese Avy/a (viable yellow) female mice entails preferential induction of a hepatic estrogen sulfotransferase. Gill, A.M., Leiter, E.H., Powell, J.G., Chapman, H.D., Yen, T.T. Diabetes (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg