The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600.

The dmp operon of the pVI150 catabolic plasmid of Pseudomonas sp. strain CF600 encodes the enzymes involved in the catabolism of phenol and methylphenols. The regulator of this dmp pathway, DmpR, is a member of the NtrC family of transcriptional activators and controls transcription of the dmp operon in response to aromatic effector compounds (V. Shingler, M. Bartilson, and T. Moore, J. Bacteriol. 175:1596-1604, 1993). Using a lux gene fusion reporter system, in which the DmpR-regulated operon promoter controls the expression of luciferase activity, we have shown in the study reported here that DmpR is activated by, but responds differentially to, the presence of a wide range of aromatic compounds. In many microbial regulatory systems, including some members of the NtrC family, the response to environmental fluctuations involves information transfer from surface sensory proteins to transcriptional regulators. However, DmpR-mediated activation of phenol metabolism in response to aromatic compounds occurs in the absence of a specific sensory protein. We used hybrids between DmpR and XylR, a structurally related regulator of toluene and xylene metabolism, to demonstrate that it is the amino-terminal domains of these regulators that determine the specificity of transcriptional activation. The results suggest that it is the direct interaction of aromatic compounds with the DmpR and XylR proteins that regulates their transcriptional promoting activity.[1]

References

 
WikiGenes - Universities