The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

chnR  -  transcriptional activator

Pseudomonas putida ND6

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of chnR

 

High impact information on chnR

 

Chemical compound and disease context of chnR

 

Biological context of chnR

 

Anatomical context of chnR

  • It is unclear how alteration of ribosomal protein expression compensates in this instance for loss of a transcriptional activator, but a regulatory role for L20 and L35 apart from their function in the ribosome may be indicated [20].
  • ExoS and ExoT are type III secreted effector proteins, regulated by the transcriptional activator ExsA, that can inhibit invasion of epithelial cells by cytotoxic strains of P. aeruginosa [21].
 

Associations of chnR with chemical compounds

References

  1. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. Cebolla, A., Sousa, C., de Lorenzo, V. J. Biol. Chem. (1997) [Pubmed]
  2. Untranslated sequence upstream of MarA in the multiple antibiotic resistance locus of Escherichia coli is related to the effector-binding domain of the XylS transcriptional activator. Hächler, H., Cohen, S.P., Levy, S.B. J. Mol. Evol. (1996) [Pubmed]
  3. Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Polesky, A.H., Ross, J.T., Falkow, S., Tompkins, L.S. Infect. Immun. (2001) [Pubmed]
  4. Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Zhang, H., Li, W., Chen, J., Yang, Y., Zhang, Z., Zhang, H., Wang, X.C., Huang, R. Plant Mol. Biol. (2007) [Pubmed]
  5. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. Gerischer, U., Segura, A., Ornston, L.N. J. Bacteriol. (1998) [Pubmed]
  6. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Passador, L., Cook, J.M., Gambello, M.J., Rust, L., Iglewski, B.H. Science (1993) [Pubmed]
  7. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Cao, H., Krishnan, G., Goumnerov, B., Tsongalis, J., Tompkins, R., Rahme, L.G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Carty, N.L., Layland, N., Colmer-Hamood, J.A., Calfee, M.W., Pesci, E.C., Hamood, A.N. Mol. Microbiol. (2006) [Pubmed]
  9. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Endoh, T., Habe, H., Nojiri, H., Yamane, H., Omori, T. Mol. Microbiol. (2005) [Pubmed]
  10. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Hassett, D.J., Ma, J.F., Elkins, J.G., McDermott, T.R., Ochsner, U.A., West, S.E., Huang, C.T., Fredericks, J., Burnett, S., Stewart, P.S., McFeters, G., Passador, L., Iglewski, B.H. Mol. Microbiol. (1999) [Pubmed]
  11. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Gambello, M.J., Kaye, S., Iglewski, B.H. Infect. Immun. (1993) [Pubmed]
  12. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. Shingler, V., Moore, T. J. Bacteriol. (1994) [Pubmed]
  13. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. van den Bergh, E.R., Dijkhuizen, L., Meijer, W.G. J. Bacteriol. (1993) [Pubmed]
  14. Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. Lessner, D.J., Parales, R.E., Narayan, S., Gibson, D.T. J. Bacteriol. (2003) [Pubmed]
  15. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Finck-Barbançon, V., Goranson, J., Zhu, L., Sawa, T., Wiener-Kronish, J.P., Fleiszig, S.M., Wu, C., Mende-Mueller, L., Frank, D.W. Mol. Microbiol. (1997) [Pubmed]
  16. PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Hauser, A.R., Kang, P.J., Engel, J.N. Mol. Microbiol. (1998) [Pubmed]
  17. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Reimmann, C., Beyeler, M., Latifi, A., Winteler, H., Foglino, M., Lazdunski, A., Haas, D. Mol. Microbiol. (1997) [Pubmed]
  18. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Carl, B., Arnold, A., Hauer, B., Fetzner, S. Gene (2004) [Pubmed]
  19. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Stiner, L., Halverson, L.J. Appl. Environ. Microbiol. (2002) [Pubmed]
  20. Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. Kitten, T., Willis, D.K. J. Bacteriol. (1996) [Pubmed]
  21. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Cowell, B.A., Twining, S.S., Hobden, J.A., Kwong, M.S., Fleiszig, S.M. Microbiology (Reading, Engl.) (2003) [Pubmed]
  22. Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. Peñaloza-Vázquez, A., Bender, C.L. J. Bacteriol. (1998) [Pubmed]
  23. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. Nowak-Thompson, B., Chaney, N., Wing, J.S., Gould, S.J., Loper, J.E. J. Bacteriol. (1999) [Pubmed]
  24. Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Devos, D., Garmendia, J., de Lorenzo, V., Valencia, A. Environ. Microbiol. (2002) [Pubmed]
  25. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Pearson, J.P., Pesci, E.C., Iglewski, B.H. J. Bacteriol. (1997) [Pubmed]
  26. PhhB, a Pseudomonas aeruginosa homolog of mammalian pterin 4a-carbinolamine dehydratase/DCoH, does not regulate expression of phenylalanine hydroxylase at the transcriptional level. Song, J., Xia, T., Jensen, R.A. J. Bacteriol. (1999) [Pubmed]
 
WikiGenes - Universities