The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endocytosis and degradation of the yeast uracil permease under adverse conditions.

Yeast uracil permease follows the secretory pathway to the plasma membrane and is phosphorylated on serine residues in a post-Golgi compartment. The protein was found to be rather stable in growing cells, but its turnover rate (half-life of about 7 h) was much faster than that of most yeast proteins. Several adverse conditions triggered the rapid degradation of uracil permease, and so a loss of uracil uptake. Turnover was rapid when yeast cells were starved of either nitrogen, phosphate, or carbon, and as they approached the stationary growth phase. Rapid permease degradation was also promoted by the inhibition of protein synthesis. The degradation of uracil permease in response to several stresses was strikingly slower in the two mutants, end3 and end4, that are deficient in the internalization step of receptor-mediated endocytosis. Thus, internalization is the first step in the permease degradative pathway. Uracil permease is degraded in the vacuole, since pep4 mutant cells lacking vacuolar protease activities accumulated large amounts of uracil permease, which was located within the vacuole by immunofluorescence. We have yet to determine whether adverse conditions enhance permease endocytosis and subsequent degradation or divert internalized uracil permease from a recycling to a degradative pathway.[1]

References

  1. Endocytosis and degradation of the yeast uracil permease under adverse conditions. Volland, C., Urban-Grimal, D., Géraud, G., Haguenauer-Tsapis, R. J. Biol. Chem. (1994) [Pubmed]
 
WikiGenes - Universities