Interactions of HIV-1 and HIV-2 envelope glycoproteins with sulphated polysaccharides and mannose-6-phosphate.
Envelope glycoproteins of human immunodeficiency viruses (HIV-1 and HIV-2) can interact with high-mannose glycans and with the mannosyl or N-acetylglucosaminyl core of complex-type oligosaccharidic structures. HIV-1 glycoproteins also specifically bind sulphated polysaccharides such as dextran sulphate (DS) and heparin. Here, we show that the latter property is shared by HIV-2 recombinant gp140 (rgp140) precursor glycoprotein. Binding of rgp140 and of corresponding rgp160 of HIV-1 to heparin- and DS-substituted (sulphated dextran beads; SDB) affinity matrices was inhibited by the soluble specific ligand and also by fetuin, asialofetuin or the anionic simple carbohydrate derivative mannose-6-phosphate ( M6P). Interaction of HIV-1 rgp120 subunit with the two affinity matrices was also inhibited by M6P, but only rgp120 binding to heparin-agarose, and not that to SDB, was affected by fetuin and asialofetuin. These results suggest that HIV-1 and HIV-2 envelope glycoproteins presumably display different sulphated polysaccharide and carbohydrate recognition sites. Some of these may be common or in close proximity: with respect to rgp160, for example, the sites may be common on the gp41 moiety and/or in a region of gp120 which would be more accessible when expressed on rgp160 than on processed gp120, while they may be distinct on the cleaved gp120 subunit. Finally, because M6P is a marker of lysosomal enzymes, we verified that HIV-1 and HIV-2 envelope glycoproteins could specifically bind in a M6P-inhibitable manner to a representative lysosomal enzyme, bovine liver beta-glucuronidase coupled to agarose, suggesting that they may possibly interfere with lysosomal enzyme sorting in HIV-infected cells.[1]References
- Interactions of HIV-1 and HIV-2 envelope glycoproteins with sulphated polysaccharides and mannose-6-phosphate. Mbemba, E., Gluckman, J.C., Gattegno, L. Glycobiology (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg