The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of HIV-2


High impact information on HIV-2

  • CD4-independent infection by HIV-2 is mediated by fusin/CXCR4 [5].
  • Supported by the observation that HIV-2D205 differs in a step of envelope glycoprotein processing, our data indicate that it could represent an alternative HIV-2 subtype and that viruses of the HIV-2/SIVsm/SIVmac group could have already infected humans before HIV-2 and SIVsm/SIVmac diverged [6].
  • Furthermore, the proteins of HIV-1 and HIV-2 have different sizes and their serological cross-reactivity is restricted to the major core protein, as the envelope glycoproteins of HIV-2 are not immunoprecipitated by HIV-1-positive sera [7].
  • Like CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of HIV-1 and HIV-2, as well as fusion of these cell lines with cells expressing the viral envelope proteins [8].
  • The compound was active against both HIV-1 and HIV-2 and against 3'-azido-3'-deoxythymidine (AZT)-resistant clinical isolates [9].

Chemical compound and disease context of HIV-2

  • Eligible adults (with HIV-1 or HIV-1 and HIV-2 dual seropositivity at stages 2 or 3 of the WHO staging system) received co-trimoxazole chemoprophylaxis (trimethoprim 160 mg, sulphamethoxazole 800 mg) daily or a matching placebo [10].
  • The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA(+/+) and PPIA(-/-) cells [11].
  • Haloperidol inhibits the HIV-1 and HIV-2 proteases in a concentration-dependent fashion with a Ki of approximately 100 microM [12].
  • The crystal structure of HIV-2 protease in complex with a reduced amide inhibitor [BI-LA-398; Phe-Val-Phe-psi (CH2NH)-Leu-Glu-Ile-amide] has been determined at 2.2-A resolution and refined to a crystallographic R factor of 17.6% [13].
  • These findings support the use of NRTIs, tenofovir, but not NNRTIs, for treating HIV-2-infected persons or for prophylaxis against HIV-2 and SIV [14].

Biological context of HIV-2


Anatomical context of HIV-2

  • The presence of p27 in the lymphoid cells suppressed replication of some strains of both HIV-1 and HIV-2 [20].
  • In contrast, the HIV-2 nef- mutant infected human macrophages as efficiently as the parental virus, whereas viruses lacking the vpr gene either alone or in conjunction with the lack of the nef gene did not replicate in macrophages [21].
  • HIV-1 Tat protein is a potent chemoattractant for basophils and lung mast cells obtained from healthy individuals seronegative for Abs to HIV-1 and HIV-2 [22].
  • CTL were restimulated with autologous phytohaemagglutinin-stimulated blasts and CTL activities in 'bulk' cultures were evaluated 7 and 14 days later by a standard 51Cr-release assay using autologous B-cell lines infected with recombinant vaccinia expressing HIV-2 Gag, Pol or Nef protein [23].
  • ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins [24].

Gene context of HIV-2

  • Strains of HIV-2, which are closely related to the SIVs, also often utilise CXCR4, CCR5, BOB and/or Bonzo [25].
  • CXCR4 is also a receptor for T-cell-line-adapted, CD4-independent strains of HIV-2 [26].
  • Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5 [27].
  • Despite broad coreceptor use, the chemokine ligand SDF-1 substantially blocked HIV-2 infectivity of peripheral blood mononuclear cells, indicating that its receptor, CXCR4, was the predominant coreceptor for infection of these cells [28].
  • Here we show that a CD4-dependent, T-cell-line-adapted HIV-2 strain uses CXCR4 and, to a lesser extent, CCR3 for fusion with and infectious entry into cells [26].

Analytical, diagnostic and therapeutic context of HIV-2


  1. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N.P., Gerard, C., Sodroski, J., Choe, H. Cell (1999) [Pubmed]
  2. Specific ablation of human immunodeficiency virus Tat-expressing cells by conditionally toxic retroviruses. Brady, H.J., Miles, C.G., Pennington, D.J., Dzierzak, E.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  3. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Pöhlmann, S., Soilleux, E.J., Baribaud, F., Leslie, G.J., Morris, L.S., Trowsdale, J., Lee, B., Coleman, N., Doms, R.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. The differential processing of homodimers of reverse transcriptases from human immunodeficiency viruses type 1 and 2 is a consequence of the distinct specificities of the viral proteases. Fan, N., Rank, K.B., Leone, J.W., Heinrikson, R.L., Bannow, C.A., Smith, C.W., Evans, D.B., Poppe, S.M., Tarpley, W.G., Rothrock, D.J. J. Biol. Chem. (1995) [Pubmed]
  5. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Endres, M.J., Clapham, P.R., Marsh, M., Ahuja, M., Turner, J.D., McKnight, A., Thomas, J.F., Stoebenau-Haggarty, B., Choe, S., Vance, P.J., Wells, T.N., Power, C.A., Sutterwala, S.S., Doms, R.W., Landau, N.R., Hoxie, J.A. Cell (1996) [Pubmed]
  6. A highly divergent HIV-2-related isolate. Dietrich, U., Adamski, M., Kreutz, R., Seipp, A., Kühnel, H., Rübsamen-Waigmann, H. Nature (1989) [Pubmed]
  7. Molecular cloning and polymorphism of the human immune deficiency virus type 2. Clavel, F., Guyader, M., Guétard, D., Sallé, M., Montagnier, L., Alizon, M. Nature (1986) [Pubmed]
  8. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Pleskoff, O., Tréboute, C., Brelot, A., Heveker, N., Seman, M., Alizon, M. Science (1997) [Pubmed]
  9. Inhibition of HIV replication in acute and chronic infections in vitro by a Tat antagonist. Hsu, M.C., Schutt, A.D., Holly, M., Slice, L.W., Sherman, M.I., Richman, D.D., Potash, M.J., Volsky, D.J. Science (1991) [Pubmed]
  10. Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Côte d'Ivoire: a randomised trial. Cotrimo-CI Study Group. Anglaret, X., Chêne, G., Attia, A., Toure, S., Lafont, S., Combe, P., Manlan, K., N'Dri-Yoman, T., Salamon, R. Lancet (1999) [Pubmed]
  11. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. Braaten, D., Luban, J. EMBO J. (2001) [Pubmed]
  12. Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. DesJarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babé, L.M., Craik, C.S. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  13. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Tong, L., Pav, S., Pargellis, C., Dô, F., Lamarre, D., Anderson, P.C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  14. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Witvrouw, M., Pannecouque, C., Switzer, W.M., Folks, T.M., De Clercq, E., Heneine, W. Antivir. Ther. (Lond.) (2004) [Pubmed]
  15. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). Fletcher, T.M., Brichacek, B., Sharova, N., Newman, M.A., Stivahtis, G., Sharp, P.M., Emerman, M., Hahn, B.H., Stevenson, M. EMBO J. (1996) [Pubmed]
  16. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Luo, L., Li, Y., Cannon, P.M., Kim, S., Kang, C.Y. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  17. A synthetic all D-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV-1 envelope glycoprotein-mediated cell fusion. Pritsker, M., Jones, P., Blumenthal, R., Shai, Y. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  18. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Craig, H.M., Pandori, M.W., Guatelli, J.C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Mavankal, G., Ignatius Ou, S.H., Oliver, H., Sigman, D., Gaynor, R.B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. Differential effects of nef on HIV replication: implications for viral pathogenesis in the host. Cheng-Mayer, C., Iannello, P., Shaw, K., Luciw, P.A., Levy, J.A. Science (1989) [Pubmed]
  21. The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Hattori, N., Michaels, F., Fargnoli, K., Marcon, L., Gallo, R.C., Franchini, G. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  22. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. de Paulis, A., De Palma, R., Di Gioia, L., Carfora, M., Prevete, N., Tosi, G., Accolla, R.S., Marone, G. J. Immunol. (2000) [Pubmed]
  23. HIV-2-specific cytotoxic T-lymphocyte activity is inversely related to proviral load. Ariyoshi, K., Cham, F., Berry, N., Jaffar, S., Sabally, S., Corrah, T., Whittle, H. AIDS (1995) [Pubmed]
  24. Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. Rucker, J., Edinger, A.L., Sharron, M., Samson, M., Lee, B., Berson, J.F., Yi, Y., Margulies, B., Collman, R.G., Doranz, B.J., Parmentier, M., Doms, R.W. J. Virol. (1997) [Pubmed]
  25. G protein-coupled receptors in HIV and SIV entry: new perspectives on lentivirus-host interactions and on the utility of animal models. Unutmaz, D., KewalRamani, V.N., Littman, D.R. Semin. Immunol. (1998) [Pubmed]
  26. Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. Bron, R., Klasse, P.J., Wilkinson, D., Clapham, P.R., Pelchen-Matthews, A., Power, C., Wells, T.N., Kim, J., Peiper, S.C., Hoxie, J.A., Marsh, M. J. Virol. (1997) [Pubmed]
  27. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. Mörner, A., Björndal, A., Albert, J., Kewalramani, V.N., Littman, D.R., Inoue, R., Thorstensson, R., Fenyö, E.M., Björling, E. J. Virol. (1999) [Pubmed]
  28. A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. McKnight, A., Dittmar, M.T., Moniz-Periera, J., Ariyoshi, K., Reeves, J.D., Hibbitts, S., Whitby, D., Aarons, E., Proudfoot, A.E., Whittle, H., Clapham, P.R. J. Virol. (1998) [Pubmed]
  29. Synthetic peptide immunoassay distinguishes HIV type 1 and HIV type 2 infections. Gnann, J.W., McCormick, J.B., Mitchell, S., Nelson, J.A., Oldstone, M.B. Science (1987) [Pubmed]
  30. HIV-1/HIV-2 seronegativity in HIV-1 subtype O infected patients. Loussert-Ajaka, I., Ly, T.D., Chaix, M.L., Ingrand, D., Saragosti, S., Couroucé, A.M., Brun-Vézinet, F., Simon, F. Lancet (1994) [Pubmed]
  31. Evolution of the primate lentiviruses: evidence from vpx and vpr. Tristem, M., Marshall, C., Karpas, A., Hill, F. EMBO J. (1992) [Pubmed]
  32. Reconstitution and properties of homologous and chimeric HIV-1.HIV-2 p66.p51 reverse transcriptase. Howard, K.J., Frank, K.B., Sim, I.S., Le Grice, S.F. J. Biol. Chem. (1991) [Pubmed]
  33. Differences in transcriptional enhancers of HIV-1 and HIV-2. Response to T cell activation signals. Tong-Starksen, S.E., Welsh, T.M., Peterlin, B.M. J. Immunol. (1990) [Pubmed]
WikiGenes - Universities