The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 1. Spatial disposition of cysteine residues in the gamma subunit analyzed by fluorescence-quenching and energy-transfer measurements.

The nicotinic acetylcholine receptor from Torpedo californica was labeled with a fluorescent, lipophilic probe, N-(1-pyrenyl)maleimide, specific for sulfhydryls in a hydrophobic environment, and was found to alkylate Cys 416, Cys 420 and Cys 451 in the gamma subunit [Li, L., Schuchard, M., Palma, A., Pradier, L., & McNamee, M.G. (1990) Biochemistry 29, 5428-5436]. The spatial disposition of the acetylcholine receptor-bound pyrene with respect to the membrane bilayer was assessed by a combination of fluorescence-quenching and resonance energy transfer measurements, under conditions of selective labeling of the gamma subunit. Quenching of pyrene fluorescence by spin-labeled fatty acids with the doxyl group at positions C-5 and C-12 revealed that the former was more effective, with a Stern-Volmer quenching constant of 0.187 compared to 0.072 for the latter, suggesting that the fluorophore(s) are located closer to the membrane-water interface rather than the hydrophobic interior. Energy transfer was found to occur from tryptophan in the acetylcholine receptor to cysteine-bound pyrene with a distance of separation of approximately 18 A. However, there was no energy transfer when pyrene-labeled AChR was reconstituted into membranes containing brominated phospholipids and cholesterol, suggesting that the fluorophore(s) responsible for energy transfer are located in the membrane domain. Thus, the N-(1-pyrenyl)maleimide can be used to monitor lipid-protein interactions of the AChR.[1]


WikiGenes - Universities