Calcium influxes and calmodulin modulate the expression and physicochemical properties of acetylcholinesterase molecular forms during development in vivo.
1. Acetylcholinesterase (AcChoE; EC 3.1.1.7) exists in several molecular forms that may be anchored to cell membranes or associated with extracellular matrix. AcChoE bound to lipidic membranes is detergent extractable (DE AcChoE), whereas the enzyme associated with extracellular matrix is high salt soluble ( HSS AcChoE). The latter variant is accumulated in synaptic regions by an unknown mechanism. 2. We have suggested previously that depolarization-induced Ca2+ influx is a major factor that modulates AcChoE synthesis in vivo, as well as the conversion of some DE AcChoE to HSS variant. In the present study, we have examined (i) the effects of depolarization-induced skeletal muscle inactivity and ionophore-induced Ca2+ influxes on the expression of AcChoE molecular forms and (ii) the hypothesis that Ca(2+)-dependent calmodulin may be involved in the conversion of at least some forms of DE AcChoE to HSS variant in vivo. 3. Chick embryos were treated in ovo during the early period of nerve-muscle interactions with d-tubocurarine (dTC; a competitive neuromuscular blocking agent) or with decamethonium (dMET; a depolarizing agent). Both dTC and dMET equally and significantly reduced embryonic neuromuscular activity (motility). However, dTC significantly decreased AcChoE overall activity, whereas dMET had virtually no effect on AcChoE expression, compared to controls. 4. Treatment of embryos with the Ca2+ ionophore A23187 significantly increased the total AcChoE activity as well as the DE/ HSS ratio of each AcChoE molecular form. However, treatment with N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (also termed W-7), a calmodulin antagonist, did not alter the total AcChoE activity, but significantly increased the DE/ HSS ratio of AcChoE forms. 5. These results support the idea that (i) depolarization and/or Ca2+ influxes, but not muscle contraction, may regulate AcChoE expression in skeletal muscle and (ii) Ca(2+)-dependent calmodulin activation may be involved in the conversion of some DE AcChoE to their HSS variant in vivo.[1]References
- Calcium influxes and calmodulin modulate the expression and physicochemical properties of acetylcholinesterase molecular forms during development in vivo. Houenou, L.J., Sahuqué, M.V., Villageois, A.P. Cell. Mol. Neurobiol. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg