Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes.
Changes in cell-to-cell contact and distribution of cytoskeletal components were investigated during in vitro culture of cattle oocyte cumulus complexes (OCC). Freeze-fracture analysis (FF), microinjections of the fluorescent dye Lucifer Yellow (LY), immunofluorescence, and ultrastructural immunocytochemistry were used. The cumulus cells (CC) remained in close contact via gap junctions (GJ) constituted of connexin43 (Cx43) during the entire culture time. Whereas the GJ decreased in diameter after 24 h of culture, their number was still substantially great at that time. The Cx43-positive GJ, localized between corona radiata cell projections and oolemma, disappeared after 6 h of culture. Concomitantly, the OCC lost the ability to transfer LY from cumulus to oocyte, and connexin32 (Cx32) became detectable in the oocytes. Both the changes in corona-oocyte coupling and cumulus expansion were preceded by the redistribution of F-actin in cytoplasm of CC. These data indicate that functional GJ linked the CC until the second meiotic arrest. However, the removal of Cx43-positive GJ interconnecting cytoplasmic projections of corona radiata cells with the oocyte was temporally correlated with germinal vesicle breakdown. The present results suggest the pivotal role of the cytoskeleton (F-actin) in cumulus expansion.[1]References
- Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Sutovský, P., Fléchon, J.E., Fléchon, B., Motlik, J., Peynot, N., Chesné, P., Heyman, Y. Biol. Reprod. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg