The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GJA1  -  gap junction protein, alpha 1, 43kDa

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GJA1

 

High impact information on GJA1

  • Hemodynamic regulation of the endothelial gap junction protein connexin43 (Cx43) was studied in a model of controlled disturbed flows in vitro [2].
  • Up-regulation of Cx43 transcripts, sustained disorganization of Cx43 protein, and impaired communication suggest that shear stress gradients in regions of disturbed flow regulate intercellular communication through the expression and function of Cx43 [2].
  • Results indicate that increased phosphorylation of Cx43 under high glucose is the mechanism targeting Cx43 for degradation by a proteasome-dependent mechanism [1].
  • The levels of Cx43 in bovine retinal endothelial cells exposed to high glucose (25 mm) decreased about 50% as compared with controls (5.5 mm glucose) [1].
  • The decrease in GJIC in cells exposed to high glucose is associated with a loss of Cx43 from the plasma membrane, as demonstrated by immunofluorescence and biotinylation of cell-surface proteins [1].
 

Biological context of GJA1

 

Anatomical context of GJA1

 

Associations of GJA1 with chemical compounds

 

Other interactions of GJA1

 

Analytical, diagnostic and therapeutic context of GJA1

References

  1. High glucose down-regulates intercellular communication in retinal endothelial cells by enhancing degradation of connexin 43 by a proteasome-dependent mechanism. Fernandes, R., Girão, H., Pereira, P. J. Biol. Chem. (2004) [Pubmed]
  2. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. DePaola, N., Davies, P.F., Pritchard, W.F., Florez, L., Harbeck, N., Polacek, D.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  3. Physical mapping of connexin 32 (GJB1) and 43 (GJA1) genes to bovine chromosomes Xq22 and 9q15/16 by fluorescence in situ hybridization. Castiglioni, B., Ferretti, L., Tenchini, M.L., Mezzelani, A., Simonic, T., Duga, S. Mamm. Genome (1996) [Pubmed]
  4. Expression of gap junctional proteins connexin 43, 32, and 26 throughout follicular development and atresia in cows. Johnson, M.L., Redmer, D.A., Reynolds, L.P., Grazul-Bilska, A.T. Endocrine (1999) [Pubmed]
  5. TGF-beta1 induces an accumulation of connexin43 in a lysosomal compartment in endothelial cells. Larson, D.M., Christensen, T.G., Sagar, G.D., Beyer, E.C. Endothelium (2001) [Pubmed]
  6. Gap junctional protein connexin 43 in bovine corpora lutea throughout the estrous cycle. Grazul-Bilska, A.T., Redmer, D.A., Johnson, M.L., Jablonka-Shariff, A., Bilski, J.J., Reynolds, L.P. Biol. Reprod. (1996) [Pubmed]
  7. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., De La Fuente, J., Boland, M.P., Lonergan, P. Biol. Reprod. (2003) [Pubmed]
  8. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Sutovský, P., Fléchon, J.E., Fléchon, B., Motlik, J., Peynot, N., Chesné, P., Heyman, Y. Biol. Reprod. (1993) [Pubmed]
  9. Gap junctional intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Johnson, M.L., Redmer, D.A., Reynolds, L.P., Bilski, J.J., Grazul-Bilska, A.T. Endocrine (2002) [Pubmed]
  10. Differential expression and regulation of connexin-43 and cell-cell coupling in myocytes from the circular and longitudinal layers of bovine myometrium. Doualla-Bell, F., Lye, S.J., Labrie, F., Fortier, M.A. Endocrinology (1995) [Pubmed]
  11. Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Lin, D., Zhou, J., Zelenka, P.S., Takemoto, D.J. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  12. Involvement of nerve growth factor in the ovulatory cascade: trkA receptor activation inhibits gap junctional communication between thecal cells. Mayerhofer, A., Dissen, G.A., Parrott, J.A., Hill, D.F., Mayerhofer, D., Garfield, R.E., Costa, M.E., Skinner, M.K., Ojeda, S.R. Endocrinology (1996) [Pubmed]
  13. Functional organization of the bovine rumen epithelium. Graham, C., Simmons, N.L. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2005) [Pubmed]
  14. Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells. Pepper, M.S., Meda, P. J. Cell. Physiol. (1992) [Pubmed]
  15. Growth hormone-related effects on apoptosis, mitosis, and expression of connexin 43 in bovine in vitro maturation cumulus-oocyte complexes. Kölle, S., Stojkovic, M., Boie, G., Wolf, E., Sinowatz, F. Biol. Reprod. (2003) [Pubmed]
  16. Corneal endothelial wound repair in normal and mitotically inhibited cultures. Mohay, J., McLaughlin, B.J. Graefes Arch. Clin. Exp. Ophthalmol. (1995) [Pubmed]
  17. High glucose induces alteration of gap junction permeability and phosphorylation of connexin-43 in cultured aortic smooth muscle cells. Kuroki, T., Inoguchi, T., Umeda, F., Ueda, F., Nawata, H. Diabetes (1998) [Pubmed]
  18. Role of intracellular cyclic adenosine 3',5'-monophosphate concentration and oocyte-cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte. Luciano, A.M., Modina, S., Vassena, R., Milanesi, E., Lauria, A., Gandolfi, F. Biol. Reprod. (2004) [Pubmed]
 
WikiGenes - Universities