Deoxycytidine methylation and the origin of spontaneous transition mutations in mammalian cells.
Previously we described a recurrent, site-specific G4784 --> A transition mutation affecting exon V of the Chinese hamster ovary cell RPS14 gene. Because the mutation is located within a CpG dinucleotide, we considered the possibility that deoxycytidine methylation might be responsible for the transition's unusually high frequency and site specificity. Therefore, we used a procedure based on the PCR amplification of bisulfite-modified genomic DNA to analyze the pattern of DNA cytosine methylation in exon V of the CHO cell RPS14 locus. Our data indicate that the CpG dinucleotide targeted by the transition mutation is stably methylated in CHO cell chromosomes. This finding supports the notion that deoxycytidine methylation promotes "spontaneous", site-specific transition mutations in mammalian cells.[1]References
- Deoxycytidine methylation and the origin of spontaneous transition mutations in mammalian cells. Tasheva, E.S., Roufa, D.J. Somat. Cell Mol. Genet. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg