The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purification of peroxisomes and subcellular distribution of enzyme activities for activation and oxidation of very-long-chain fatty acids in rat brain.

Brain contains high amounts of very-long-chain (VLC) fatty acids (> C22). Since mitochondria from liver and skin fibroblasts lack lignoceroyl-CoA ligase, in liver and skin fibroblasts fatty acids are exclusively oxidized in peroxisomes. Findings by Poulos and associates [9] suggested that contrary to liver and cultured skin fibroblasts brain mitochondria contain lignoceroyl-CoA ligase and can oxidize lignoceric acid. The present study was undertaken to develop a procedure for the isolation of subcellular organelles of higher purity from brain and to get a better understanding of the subcellular localization of the oxidation of VLC fatty acids in brain. The enzyme activities for activation and oxidation of palmitic and lignoceric acids were determined in peroxisomes, mitochondria, microsomes and a myelin fraction from rat brain and peroxisomes, mitochondria and microsomes purified from rat liver. Like in liver, brain lignoceroyl-CoA ligase activity in microsomes and peroxisomes was approx. 9 times higher than in mitochondria. In addition to palmitoyl-CoA ligase the antibodies against palmitoyl-CoA ligase inhibited the residual mitochondrial lignoceroyl-CoA ligase activity, meaning that lignoceroyl-CoA ligase activity in mitochondria was derived from palmitoyl-CoA ligase. Accordingly, in peroxisomes lignoceric acid was oxidized at 7 times higher rate than in mitochondria. Mitochondria were able to oxidize lignoceric acid efficiently when supplemented with lignoceroyl-CoA ligase activity from microsomes or myelin. These results show that in brain lignoceric acid is oxidized in peroxisomes and that lignoceroyl-CoA ligase activity is localized in peroxisomes and microsomes, but not in mitochondria. Peroxisomes and microsomes contain both lignoceroyl-CoA and palmitoyl-CoA ligases. Similar to peroxisomes and microsomes, the antibodies against palmitoyl-CoA ligase inhibited only the palmitoyl-CoA ligase activity in myelin but not the lignoceroyl-CoA ligase activity. These results suggest that in addition to palmitoyl-CoA ligase, myelin also contains lignoceroyl-CoA ligase.[1]


WikiGenes - Universities