The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

ACMC-1B1XW     tetracosanoic acid

Synonyms: AG-E-99395, AG-F-95304, CHEMBL1173620, CHEBI:28866, L6641_SIGMA, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of tetracosanoic acid


High impact information on tetracosanoic acid

  • In the complementing combinations, fused cells showed increased lignoceric acid oxidation, resistance against 1-pyrene dodecanoic acid/UV selection, and normalization of the size and the distribution of peroxisomes [2].
  • To further define the defect in these two forms of X chromosome-linked ALD, we examined the oxidation of [1-14C]lignoceric acid (n-tetracosanoic acid, C24:0) and [1-14C]lignoceroyl-CoA (substrates for the first and second steps of beta-oxidation, respectively) [6].
  • Microsomal fractions prepared from transfected COS7 cells showed tetracosanoic acid 2-hydroxylase activities in an NADPH- and NADPH: cytochrome P-450 reductase-dependent manner [7].
  • In contrast, constitutive oxidation of the very long chain fatty acid, lignoceric acid, was not different between wild type and PPARalpha null mice, suggesting that constitutive expression of enzymes involved in peroxisomal beta-oxidation is independent of PPARalpha [8].
  • Moreover, the lack of effect of removal of ATP or substitution with AMPOPCP (a nonhydrolyzable substrate) demonstrates that the translocation of palmitoyl-CoA and lignoceric acid across peroxisomal membrane does not require energy [9].

Chemical compound and disease context of tetracosanoic acid


Biological context of tetracosanoic acid


Anatomical context of tetracosanoic acid


Associations of tetracosanoic acid with other chemical compounds


Gene context of tetracosanoic acid

  • Varying concentrations (2.5 to 10 microg ml(-1)) of VLCFAs, lignoceric acid and cerotic acid, significantly (p < 0.001) increased the enzymic activity of NOX in cultures of human dermal fibroblasts [24].
  • RESULTS: Treatment of skin slices with lignoceric acid significantly increased (p < 0.001) the enzymic activities of acid lipase, acid phosphatase, alpha-glucosidase, alpha-galactosidase, N-acetyl-alpha-D-glucosaminidase (NAGA) and N-acetyl-alpha-D-galactosaminidase (NAGTA) [25].
  • Biochemical abnormalities including defective lignoceric acid oxidation, dihydroxyacetone phosphate acyltransferase deficiency, and disturbed biosynthesis of peroxisomal beta-oxidation enzymes were preserved in the transformants [26].
  • Residual lignoceric acid beta-oxidation activity varied from approximately 15% in Zellweger syndrome up to 50% in X-linked adrenoleukodystrophy [27].
  • Other minor acyl trehaloses were detected in M. tuberculosis (strain Canetti), differing from the major component by the occurrence of an additional hydroxy fatty acid (3-hydroxy-2,4,6-trimethyl tetracosanoic acid) or by the number of acyl substituents [28].

Analytical, diagnostic and therapeutic context of tetracosanoic acid


  1. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Singh, I., Moser, A.E., Goldfischer, S., Moser, H.W. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. Novel subtype of peroxisomal acyl-CoA oxidase deficiency and bifunctional enzyme deficiency with detectable enzyme protein: identification by means of complementation analysis. Suzuki, Y., Shimozawa, N., Yajima, S., Tomatsu, S., Kondo, N., Nakada, Y., Akaboshi, S., Lai, M., Tanabe, Y., Hashimoto, T. Am. J. Hum. Genet. (1994) [Pubmed]
  3. Carrier identification of X-linked adrenoleukodystrophy by measurement of very long chain fatty acids and lignoceric acid oxidation. Inoue, K., Suzuki, Y., Yajima, S., Shimozawa, N., Tomatsu, S., Orii, T., Kondo, N. Clin. Genet. (1996) [Pubmed]
  4. Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Gulati, S., Singh, A.K., Irazu, C., Orak, J., Rajagopalan, P.R., Fitts, C.T., Singh, I. Arch. Biochem. Biophys. (1992) [Pubmed]
  5. Effect of hypoxia-reoxygenation on peroxisomal functions in cultured human skin fibroblasts from control and Zellweger syndrome patients. Kremser, K., Kremser-Jezik, M., Singh, I. Free Radic. Res. (1995) [Pubmed]
  6. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Lazo, O., Contreras, M., Hashmi, M., Stanley, W., Irazu, C., Singh, I. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  7. The human FA2H gene encodes a fatty acid 2-hydroxylase. Alderson, N.L., Rembiesa, B.M., Walla, M.D., Bielawska, A., Bielawski, J., Hama, H. J. Biol. Chem. (2004) [Pubmed]
  8. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). Aoyama, T., Peters, J.M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., Gonzalez, F.J. J. Biol. Chem. (1998) [Pubmed]
  9. Transport of fatty acids into human and rat peroxisomes. Differential transport of palmitic and lignoceric acids and its implication to X-adrenoleukodystrophy. Singh, I., Lazo, O., Dhaunsi, G.S., Contreras, M. J. Biol. Chem. (1992) [Pubmed]
  10. A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts. Singh, H., Poulos, A. Arch. Biochem. Biophys. (1986) [Pubmed]
  11. The effect of Lorenzo's oil on oxidative stress in X-linked adrenoleukodystrophy. Deon, M., Wajner, M., Sirtori, L.R., Fitarelli, D., Coelho, D.M., Sitta, A., Barschak, A.G., Ferreira, G.C., Haeser, A., Giugliani, R., Vargas, C.R. J. Neurol. Sci. (2006) [Pubmed]
  12. Reye syndrome: rate of oxidation of fatty acids in leukocytes and serum levels of lipid peroxides. Yoshida, Y., Singh, I., Singh, A.K., Tecklenberg, F.W., Brown, F.R., Darby, C.P. J. Exp. Pathol. (1989) [Pubmed]
  13. Alpha hydroxylation of lignoceric acid to cerebronic acid during brain development. Diminished hydroxylase activity in myelin-deficient mouse mutants. Murad, S., Kishimoto, Y. J. Biol. Chem. (1975) [Pubmed]
  14. Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy. Sandhir, R., Khan, M., Chahal, A., Singh, I. J. Lipid Res. (1998) [Pubmed]
  15. Alpha-hydroxylation and oxidation of lignoceric acid in brain: the role of heat-stable and heat-labile factors. Shimeno, H., Wali, A., Kishimoto, Y. Neurochem. Res. (1984) [Pubmed]
  16. Lipid peroxidation and oxidation of lignoceric acid in kidneys from thioridazine treated rats. Dhaunsi, G.S., Singh, A.K., Orak, J., Singh, I. J. Exp. Pathol. (1990) [Pubmed]
  17. Neonatal adrenoleukodystrophy: clinical, pathologic, and biochemical delineation of a syndrome affecting both males and females. Jaffe, R., Crumrine, P., Hashida, Y., Moser, H.W. Am. J. Pathol. (1982) [Pubmed]
  18. Biosynthesis of lignoceric acid from behenyl0COA in mouse brain microsomes. Comparison between normal and Quaking mutant. Bourre, J.M., Daudu, O.L., Baymann, N.A. Biochem. Biophys. Res. Commun. (1975) [Pubmed]
  19. Characterization of rat brain microsomal acyl-coenzyme A ligases: different enzymes for the synthesis of palmitoyl-coenzyme A and lignoceroyl-coenzyme A. Bhushan, A., Singh, R.P., Singh, I. Arch. Biochem. Biophys. (1986) [Pubmed]
  20. Identification of the pathway of alpha-oxidation of cerebronic acid in peroxisomes. Sandhir, R., Khan, M., Singh, I. Lipids (2000) [Pubmed]
  21. A new peroxisomal disease with impaired phytanic and pipecolic acid oxidation. Tranchant, C., Aubourg, P., Mohr, M., Rocchiccioli, F., Zaenker, C., Warter, J.M. Neurology (1993) [Pubmed]
  22. Phytanic acid activation in rat liver peroxisomes is catalyzed by long-chain acyl-CoA synthetase. Watkins, P.A., Howard, A.E., Gould, S.J., Avigan, J., Mihalik, S.J. J. Lipid Res. (1996) [Pubmed]
  23. Postnatal development and isolation of peroxisomes from brain. Lazo, O., Singh, A.K., Singh, I. J. Neurochem. (1991) [Pubmed]
  24. Very long chain fatty acids activate NADPH oxidase in human dermal fibroblasts. Dhaunsi, G.S., Kaur, J., Alsaeid, K., Turner, R.B., Bitar, M.S. Cell Biochem. Funct. (2005) [Pubmed]
  25. Very-long-chain fatty acids activate lysosomal hydrolases in neonatal human skin tissue. Dhaunsi, G.S., Al-Essa, M., Muawad, W., Srivastava, B.S., Rashwan, N. Medical principles and practice : international journal of the Kuwait University, Health Science Centre. (2005) [Pubmed]
  26. Transformation and characterization of mutant human fibroblasts defective in peroxisome assembly. Okamoto, H., Suzuki, Y., Shimozawa, N., Yajima, S., Masuno, M., Orii, T. Exp. Cell Res. (1992) [Pubmed]
  27. Accumulation and defective beta-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants. Poulos, A., Singh, H., Paton, B., Sharp, P., Derwas, N. Clin. Genet. (1986) [Pubmed]
  28. Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Daffé, M., Lacave, C., Lanéelle, M.A., Gillois, M., Lanéelle, G. Eur. J. Biochem. (1988) [Pubmed]
  29. Mixtures of semisynthetic species of cerebroside sulfate with dipalmitoyl phosphatidylcholine. Thermotropic phase behavior and permeability. Boggs, J.M., Mulholland, D., Koshy, K.M. Biochem. Cell Biol. (1990) [Pubmed]
WikiGenes - Universities