The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transition state stabilization by chloramphenicol acetyltransferase. Role of a water molecule bound to threonine 174.

The structure of the type III variant of chloramphenicol acetyltransferase reveals that Thr-174, a conserved residue, is hydrogen-bonded to a bound water molecule (water 252). Modeling studies (P. C. E. Moody and A. G. W. Leslie, unpublished data) suggested that water 252 could play a part in transition state stabilization via a hydrogen bond to the oxyanion of the putative tetrahedral intermediate. In addition, water 252 is one of three bound water molecules hydrogen-bonded to the 1-hydroxyl group of chloramphenicol in the chloramphenicol acetyltransferase-chloramphenicol binary complex. A combination of site-directed mutagenesis and the use of an alternative substrate has allowed the quantitation of the energetic contribution of each of the interactions made by water 252 to catalysis. Thr-174 was replaced by alanine, valine, and isoleucine, each substitution removing the hydroxyl group hydrogen-bonded to water 252. Steady-state kinetic analysis of the mutant enzymes was carried out using both chloramphenicol and 1-deoxy-chloramphenicol as acetyl acceptors. The substitutions at Thr-174 result in a fall in kcat and in decreased affinities for each acetyl acceptor in the binary complexes and also in the ternary complexes with acetyl-CoA. From the calculated free energies in the transition state, the hydrogen bond between water 252 and the oxyanion of the tetrahedral intermediate can be estimated to contribute 0.9 kcal mol-1 toward transition state stabilization, whereas the free energy of the hydrogen bonds between the 1-hydroxyl of chloramphenicol and three bound water molecules provides 1.6 kcal mol-1.[1]

References

 
WikiGenes - Universities