Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase.
In Saccharomyces cerevisiae the utilization of lactate occurs via specific oxidation of L- and D-lactate to pyruvate catalysed by L-lactate ferricytochrome c oxidoreductase (L-LCR) (EC 1.1.2.3) encoded by the CYB2 gene, and D-lactate ferricytochrome c oxidoreductase (D-LCR) (EC 1.1.2.4), respectively. We selected several lactate- pyruvate+ mutants in a cyb2 genetic background. Two of them were devoid of D-LCR activity (dld mutants, belonging to the same complementation group). The mutation mapped in the structural gene. This was demonstrated by a gene dosage effect and by the thermosensitivity of the enzyme activity of thermosensitive revertants. The DLD gene was cloned by complementation for growth on D-, L-lactate in the strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. The minimal complete complementing sequence was localized by subcloning experiments. From the sequence analysis an open reading frame (ORF) was identified that could encode a polypeptide of 576 amino-acids, corresponding to a calculated molecular weight of 64000 Da. The deduced protein sequence showed significant homology with the previously described microsomal flavoprotein L-gulono-gamma-lactone oxidase isolated from Rattus norvegicus, which catalyses the terminal step of L-ascorbic acid biosynthesis. These results are discussed together with the role of L-LCR and D-LCR in lactate metabolism of S. cerevisiae.[1]References
- Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Lodi, T., Ferrero, I. Mol. Gen. Genet. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg