The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus.

In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limiting enzymes in glycogen synthesis and glycolysis, glycogen synthase (GS) and phosphofructokinase ( PFK), respectively. Analysis of biopsies of quadriceps muscle from 19 NIDDM patients and 19 control subjects showed in the basal state a 30% decrease (P < 0.005) in total GS activity and a 38% decrease (P < 0.001) in GS mRNA/microgram DNA in NIDDM patients, whereas the GS protein level was normal. The enzymatic activity and protein and mRNA levels of PFK were all normal in diabetic patients. In subgroups of NIDDM patients and control subjects an insulin-glucose clamp in combination with indirect calorimetry was performed. The rate of insulin-stimulated nonoxidative glucose metabolism was decreased by 47% (P < 0.005) in NIDDM patients, whereas the glucose oxidation rate was normal. The PFK activity, protein level, and mRNA/microgram DNA remained unchanged. The relative activation of GS by glucose-6-phosphate was 33% lower (P < 0.02), whereas GS mRNA/micrograms DNA was 37% lower (P < 0.05) in the diabetic patients after 4 h of hyperinsulinemia. Total GS immunoreactive mass remained normal. In conclusion, qualitative but not quantitative posttranslational abnormalities of the GS protein in muscle determine the reduced insulin-stimulated nonoxidative glucose metabolism in NIDDM.[1]


WikiGenes - Universities